Bone is composed of a mineral matrix reinforced by a network of collagen that governs the biomechanical functions of the skeletal system in the body. The purpose of the study was to investigate the possible effect of extremely low-frequency magnetic field (ELF-MF) on geometric and biomechanical properties of rats' bone. In this study, 30 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control sham. The first and second experimental group (n=10) were exposed to 100 microT and 500 microT-MF during 10 months, 2 h a day, respectively, and the third (sham) (n=10) group was treated like experimental group except ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, geometric and the biomechanical properties of rats' bone, such as cross-sectional area of the femoral shaft, length of the femur, cortical thickness of the femur, ultimate tensile strength (maximum load), displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone were determined. The geometric and biomechanical analyses showed that a significant decrease in rats exposed to 100 microT-MF in comparison to sham and 500 microT-MF exposed rats about the values of cross-sectional area of the femoral shaft (P<0.05). Maximum load increased in 100 muT-MF and 500 microT-MF exposed rats when compared to that of the sham rats (P<0.05). The cortical thickness of the femurs of MF-exposed rats (100 microT and 500 microT) were significantly decreased in comparison to that of sham groups' rats (P<0.05 and P<0.001). However, no significant differences were found in the other biomechanical endpoints between each other groups, such as: length of the femur, displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone (P>0.05). These experiments demonstrated that 100 microT-MF and 500 microT-MF can affect biomechanical and geometrical properties of rats' bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15368371003635343 | DOI Listing |
Biomater Sci
January 2025
Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield AL9 7TA, UK.
Swimming and flying animals produce thrust with oscillating fins, flukes or wings. The relationship between frequency , amplitude and forward velocity can be described with a Strouhal number , where = 2/, where animals are observed to cruise with [Formula: see text]-0.4.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Industrial and Systems Engineering, Auburn University, 3301 Shelby Center, Auburn, AL, 36849-5346, USA.
Background: Magnetic resonance imaging (MRI) is increasingly used to estimate the geometric dimensions of lower lumbar vertebrae. While MRI-based measurements have demonstrated good reliability with interclass correlation coefficients (ICCs) of 0.80 or higher, many evaluations focus solely on the comparison of identical MRI images.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!