Hydrogel-encapsulated soil: a tool to measure contaminant attenuation in situ.

Environ Sci Technol

Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6036, USA.

Published: April 2010

Hydrogel encapsulation presents a novel and powerful general method to observe many water-solid contaminant interactions in situ for a variety of aqueous media including groundwater, with a variety of nondestructive analytical methods, and with a variety of solids including contaminated soil. After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed nondestructively for uranium and other elements using X-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions for the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169-1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r(2) = 0.89) with residual uranium after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term in situ retained fraction from 50% to 88% of the total uranium and increased the half-life of that long-term retained fraction from 990 to 40000 days.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es903983fDOI Listing

Publication Analysis

Top Keywords

total uranium
8
long-term situ
8
retained fraction
8
uranium
7
hydrogel-encapsulated soil
4
soil tool
4
tool measure
4
measure contaminant
4
contaminant attenuation
4
situ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!