Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The purpose of this work was to create an anatomically detailed EGSnrc Monte Carlo based model of the right lung. The resulting model, called BRANCH, includes an accurate representation of the right bronchial, arterial, and venous branching networks down to a scale of 0.1 mm. The model may be varied to represent lung shape and density at any phase of the respiration cycle.
Methods: Polynomial surfaces were used to approximate the anatomic boundaries that define the right lung surface at several phases of the respiration cycle. A branching network algorithm was used to generate the bronchial, arterial, and venous trees within the anatomic boundaries. The branching networks were modeled as a series of bifurcating cylinders connected by spherical junctions. The validity of the BRANCH dose calculation was verified using an all-water version of the model.
Results: The geometric dimensions of the BRANCH model corresponded well with published data. The bronchial tree model contained 27 798 branches ranging from 0.02 to 0.54 cm in diameter. The arterial tree model had 27,957 branches ranging from 0.02 to 1.2 cm in diameter. The venous model tree had 26 347 branches ranging from 0.02 to 0.34 cm in diameter. A gamma analysis indicated that the all-water BRANCH Monte Carlo code produced dose distributions that agreed within 0.1 cm and 0.5% to conventional DOSXYZnrc results.
Conclusions: The BRANCH model is a useful tool for performing detailed dosimetric studies within a realistic representation of the lung.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3285042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!