The effects of caloric restriction (CR) on the skeleton are well studied in adult rodents and include lower cortical bone mass but higher trabecular bone volume. Much less is known about how CR affects bone mass in young, rapidly growing animals. This is an important problem because low caloric intake during skeletal acquisition in humans, as in anorexia nervosa, is associated with low bone mass, increased fracture risk, and osteoporosis in adulthood. To explore this question, we tested the effect of caloric restriction on bone mass and microarchitecture during rapid skeletal growth in young mice. At 3 weeks of age, we weaned male C57Bl/6J mice onto 30% caloric restriction (10% kcal/fat) or normal diet (10% kcal/fat). Outcomes at 6 (n = 4/group) and 12 weeks of age (n = 8/group) included body mass, femur length, serum leptin and insulin-like growth factor 1 (IGF-1) values, whole-body bone mineral density (WBBMD, g/cm(2)), cortical and trabecular bone architecture at the midshaft and distal femur, bone formation and cellularity, and marrow fat measurement. Compared with the normal diet, CR mice had 52% and 88% lower serum leptin and 33% and 39% lower serum IGF-1 at 6 and 12 weeks of age (p < .05 for all). CR mice were smaller, with lower bone mineral density, trabecular, and cortical bone properties. Bone-formation indices were lower, whereas bone-resorption indices were higher (p < .01 for all) in CR versus normal diet mice. Despite having lower percent of body fat, bone marrow adiposity was elevated dramatically in CR versus normal diet mice (p < .05). Thus we conclude that caloric restriction in young, growing mice is associated with impaired skeletal acquisition, low leptin and IGF-1 levels, and high marrow adiposity. These results support the hypothesis that caloric restriction during rapid skeletal growth is deleterious to cortical and trabecular bone mass and architecture, in contrast to potential skeletal benefits of CR in aging animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127399PMC
http://dx.doi.org/10.1002/jbmr.82DOI Listing

Publication Analysis

Top Keywords

bone mass
20
caloric restriction
16
weeks age
12
bone
9
low bone
8
trabecular bone
8
10% kcal/fat
8
normal diet
8
serum leptin
8
lower serum
8

Similar Publications

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Sport participation affects body composition and bone health, but the association between sport, body composition, and bone health in female athletes is complex. We compared areal bone mineral density (aBMD, DXA) and tibial volumetric bone mineral density (vBMD), geometry, microarchitecture, and estimated strength (HR-pQCT) in cross-country runners (n = 22), gymnasts (n = 23) and lacrosse players (n = 35), and investigated associations of total body lean mass (TBLM), team, and their interaction with tibial bone outcomes. Total body (TB), total hip (TH), femoral neck (FN), and lumbar spine (LS) aBMD were higher in gymnasts than runners (p < 0.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

The effect of bone relaxation on the simulated pull-off force of a cementless femoral knee implant.

J Biomech

January 2025

Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB Nijmegen, the Netherlands.

Aseptic loosening is the primary cause of revision in cementless total knee arthroplasty (TKA), emphasizing the importance of strong initial stability for long-term implant success. Pre-clinical evaluations are crucial for understanding implant fixation mechanics and improving implant designs. Finite element (FE) analysis models often use linear elastic bone material models, which do not accurately reflect bone's mechanical behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!