Beasley Lake was assessed monthly in 2005 for biological impairment from 17 historic and current-use pesticides in water and leaf litter using Hyalella azteca (Saussure). Sixteen pesticides were detected in both water and leaf litter with peak detections in spring and summer. Detections ranged from 1-125 ng L(-1) in water and 1-539 ng g(-1) OC in leaf litter. Ten-day H. azteca survival and growth (mg dw) bioassay results indicated no adverse effects on survival or growth in H. azteca exposed to water or leaf litter. Rather, enhanced growth occurred in both lake water and leaf litter exposures for 8 and 6 months, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-010-9951-x | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
School of Fishery, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China.
Mangrove forests are crucial coastal "blue carbon" ecosystems, known for their significant carbon sequestration capabilities to "carbon neutrality" and mitigating global climate change. We used Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.
Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).
Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.
New Phytol
December 2024
Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA.
Deadwood represents globally important carbon (C), nitrogen (N), and phosphorus (P) pools. Current wood nutrient dynamics models are extensions of those developed for leaf litter decomposition. However, tissue structure and dominant decomposers differ between leaf and woody litter, and recent evidence suggests that decomposer stoichiometry, in combination with litter quality, may affect nutrient release.
View Article and Find Full Text PDFMicrob Ecol
December 2024
Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany.
Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4, 98851, Nouméa, Cedex, New Caledonia.
This study examined the dynamics of major elements and trace metals (TM) during litterfall decomposition in two mangrove forests-control and urban-along New Caledonia's coast. A litterbag experiment was carried out for 72 days for the two main species (Rhizophora stylosa, and Avicennia marina) of the island. Results showed that the urban runoff enhances the leaching of some major elements (K, Mg, Na) during litter decomposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!