Clinical reports have demonstrated that berberine is a potential antidiabetic agent, but the underlying mechanism is unclear. The purpose of this study was to investigate if berberine exerts its hypoglycemic action via inhibiting intestinal disaccharidases using in vivo and in vitro experiments. Streptozotocin-induced diabetic rats received berberine (100 or 200 mg/kg) orally once daily or acarbose (40 mg/kg) orally twice daily for 5 weeks. Disaccharidase activities and sucrase-isomaltase (SI) complex messenger RNA (mRNA) expression in intestinal regions were assessed. The same treatment was operated in normal rats. Sucrose and maltose loading tests were also documented. In addition, Caco-2 cells were cultured in medium containing berberine or berberine plus chelerythrine. Compound C or H-89 for 5 days, disaccharidase activities, and SI complex mRNA levels were measured. The animal experiments showed that berberine significantly decreased the disaccharidase activities and SI complex mRNA expression both in diabetic rats and normal rats. Berberine can also significantly lower postprandial blood glucose levels induced by sucrose or maltose loading in normal rats. The cellular results showed that berberine may suppress disaccharidase activities and downregulate SI complex mRNA expression in a concentration-dependent manner. Only H-89, an inhibitor of protein kinase A (PKA), may reverse the decrease in disaccharidase activities and SI complex mRNA expression induced by berberine. In conclusion, berberine suppresses disaccharidase activities and SI complex mRNA expression with beneficial metabolic effects in diabetic states. The inhibitory effect, at least partly, involves the PKA-dependent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-010-0502-0DOI Listing

Publication Analysis

Top Keywords

disaccharidase activities
24
mrna expression
20
complex mrna
20
activities complex
16
normal rats
12
berberine
11
berberine suppresses
8
intestinal disaccharidases
8
beneficial metabolic
8
metabolic effects
8

Similar Publications

Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability.

Nat Commun

January 2025

Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed.

View Article and Find Full Text PDF

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Background: With the global increase in metabolic disorders, identifying effective dietary strategies is crucial for enhancing health outcomes. While various health advantages of alkaline reduced water (ARW) have been documented, its specific impacts on glucose and lipid metabolism in both healthy and diabetic conditions are still not well understood.

Methods: This study investigates how ARW affects carbohydrate and lipid metabolism in male Wistar rats, which were induced to develop glucose metabolism disorders through subcutaneous injections of nicotinamide and streptozotocin (STZ).

View Article and Find Full Text PDF

Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium JEA5 (Gaa117) was purified and characterized using an expression system to produce OAOSs and determine their bioactivity.

View Article and Find Full Text PDF

Enhanced activity of split trehalase biosensors by interspecies domain combineering.

Biochimie

January 2025

Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Article Synopsis
  • The split trehalase biosensor is a new diagnostic tool made from engineered proteins that can activate when brought together by specific analytes, like glucose, without needing sample processing.
  • Researchers aimed to create a version of split trehalase that works better at physiological pH, obtaining high-activity versions from *Cellvibrio* that have improved performance compared to the existing *E. coli* based systems.
  • By modifying these split trehalases to reduce unwanted self-reassembly and boost their activity, the study showed potential for better clinical testing outcomes through enhanced biosensor capabilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!