The present study focused on the identification of epistatic QTL pairs for body composition traits (carcass cut, lean tissue, and fat tissue weights) measured at slaughter weight (140 kg of BW) in a 3-generation full-sib population developed by crossing Pietrain sires with a crossbred dam line. Depending on the trait, phenotypic observations were available for 306 to 315 F(2) animals. For the QTL analysis, 386 animals were genotyped for 88 molecular markers covering chromosomes SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13, and SSC14. In total, 23 significant epistatic QTL pairs were identified, with the additive x additive genetic interaction being the most prevalent. Epistatic QTL were identified across all chromosomes except for SSC13, and epistatic QTL pairs accounted for between 5.8 and 10.2% of the phenotypic variance. Seven epistatic QTL pairs were between QTL that resided on the same chromosome, and 16 were between QTL that resided on different chromosomes. Sus scrofa chromosome 1, SSC2, SSC4, SSC6, SSC8, and SSC9 harbored the greatest number of epistatic QTL. The epistatic QTL pair with the greatest effect was for the entire loin weight between 2 locations on SSC7, explaining 10.2% of the phenotypic variance. Epistatic associations were identified between regions of the genome that contain the IGF-2 or melanocortin-4 receptor genes, with QTL residing in other genomic locations. Quantitative trait loci in the region of the melanocortin-4 receptor gene and on SSC7 showed significant positive dominance effects for entire belly weight, which were offset by negative dominance x dominance interactions between these QTL. In contrast, the QTL in the region of the IGF-2 gene showed significant negative dominance effects for entire ham weight, which were largely overcompensated for by positive additive x dominance genetic effects with a QTL on SSC9. The study shows that epistasis is of great importance for the genomic regulation of body composition in pigs and contributes substantially to the variation in complex traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/jas.2009-2266 | DOI Listing |
bioRxiv
November 2024
Department of Biology, New York University, New York, NY, USA.
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis, wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate.
View Article and Find Full Text PDFTheor Appl Genet
November 2024
NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.
View Article and Find Full Text PDFBreed Sci
June 2024
Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
This study focused on cucumbers' multi-pistillate flower (MPF) trait, which is essential for high yields. A genetic linkage map was constructed using a population of 219 F plants to analyze quantitative trait loci (QTL) associated with MPF traits. Crossbreeding of EWSCU-809 (MPF) with EWSCU-989 (single pistillate flower: SPF) generated an F hybrid that self-pollinated to form an F population.
View Article and Find Full Text PDFFront Plant Sci
October 2024
Misión Biológica de Galicia (CSIC), Pontevedra, Spain.
Introduction: Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.
View Article and Find Full Text PDFPeerJ
September 2024
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
Background: Seed vigor recognized as a quantitative trait is of particular importance for agricultural production. However, limited knowledge is available for understanding genetic basis of wheat seed vigor.
Methods: The aim of this study was to identify quantitative trait loci (QTL) responsible for 10 seed vigor-related traits representing multiple aspects of seed-vigor dynamics during artificial aging with 6 different treatment times (0, 24, 36, 48, 60, and 72 h) under controlled conditions (48 °C, 95% humidity, and dark).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!