Traumatic brain injury (TBI) confers a major burden to Western society and effective treatments are urgently required to improve the long-term deficits that inflict TBI survivors. Depletion of intracellular Mg(2+) is a well-known phenomenon occurring after TBI and is associated with poor neurological outcome. However, despite success in pre-clinical experimental studies, therapies utilizing Mg(2+) have not always proven to be clinically effective. Recent evidence implicates members of the transient receptor potential melastatin (TRPM) channel family in processes leading to neuronal cell death following ischemic injury, however, the exact mechanism by which this occurs is not completely understood. Specifically, TRPM7 and TRPM6 are two channels that have been identified as potentially playing a role in regulating Mg(2+) homeostasis, although whether this role in magnesium regulation and neuronal injury is significant is controversial. The purpose of this review is to explore the relationship between TRPM family members and Mg(2+) homeostasis, including their potential involvement in secondary injury processes leading to cell death following TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1684/mrh.2009.0189 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFSci Adv
January 2025
Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.
Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).
Arch Dermatol Res
January 2025
Department of Dermatology, Firat University Hospital, Elazig, TR23119, Turkey.
Background: Atopic dermatitis (AD) is a chronic, pruritic, and inflammatory dermatosis seen in individuals with an atopic predisposition. This study aimed to examine the immunoreactivity of spexin and TRPM2 in skin samples from patients with AD and MF lesions using immunohistochemical methods.
Materials And Methods: The study utilized a total of 60 skin samples, comprising 20 from AD patients, 20 from MF patients, and 20 from control subjects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!