Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?

Med Hypotheses

Biomedical Engineering Program, Department of Engineering, Universidad Iberoamericana, Mexico City, Mexico.

Published: August 2010

Bone accommodates to changes in its functional environment ensuring that sufficient skeletal mass is appropriately positioned to withstand the mechanical loads that result from functional activities. Increasing physical activity will result in increased bone mass, while the removal of functional loading would result in bone loss. Bone is a composite material made up of a collagen-hydroxyapatite matrix and a complex network of lacunae-canaliculi channels occupied by osteocyte and osteoblast processes, immersed in interstitial fluid. There are strong indications that changes in interstitial fluid flow velocity or pressure are the means by which an external load signal is communicated to the cell. In vitro studies indicate that shear stress, induced by interstitial fluid flow, is a potent bone cell behavior regulator. One of the forms of altering interstitial fluid flow is through the mechanical deformation of skeletal tissue in response to applied loads. Other methods include increased intramedullary pressure, negative-pressure tissue regeneration, or external mechanical stimulation. Analysis of these methods poses the question of process effectiveness. The efficacy of each method theoretically will depend on the mechanical efficiency of transmitting an external load and converting it into changes in interstitial fluid flow. In this paper, we combine recent knowledge on the effect of the bone's interstitial fluid flow, different fluid patterns, the role of gap junctions, and the concept of mechanical effectiveness of different methods that influence interstitial fluid flow within bone, and we hypothesize that the efficiency of bone remodeling can be improved if a small mechanical percussion device could be placed directly in contact with the bone, thus inducing local interstitial fluid flow variations. Enhancement of bone repair and remodeling through controlled interstitial fluid flow possesses many clinical applications. Further investigations and in vivo experiments are required. Practical methods and clinical apparatuses need to be conceived and developed to validate and facilitate the clinical use of this technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2010.02.021DOI Listing

Publication Analysis

Top Keywords

interstitial fluid
40
fluid flow
36
fluid
11
bone
10
flow
9
interstitial
9
mechanical stimulation
8
changes interstitial
8
external load
8
mechanical
7

Similar Publications

Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review.

J Psychiatr Res

January 2025

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.

Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers.

View Article and Find Full Text PDF

Protocol for extraction of gut interstitial fluid in mice with two-front nutrient supply.

STAR Protoc

January 2025

Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311113, China. Electronic address:

The intestine features a two-front nutrient supply environment, comprising an enteral side enriched with microbial and dietary metabolites and a serosal side supplied by systemic nutrients, collectively supporting intestinal and systemic homeostasis, but there is currently no optimal approach for extracting and assessing the local intestinal microenvironment. Here, we present a protocol for constructing a nutrient supply model in mice and extracting gut interstitial fluid (GIF) via centrifugation. This model and the extracted GIF are suitable for downstream analyses.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.

Methods: The study involved 45 women with a mean age of 35 ± 4.

View Article and Find Full Text PDF

Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!