A-disintegrin-and-metalloproteinase-domains (ADAMs) are membrane-anchored glycoproteins involved in cell adhesion, cell migration and proteolysis. ADAM15 has been implicated in atherosclerosis, with an effect on vascular smooth muscle cell migration. We investigated whether ADAM33, which is evolutionally closely related to ADAM15, was expressed in atheromas and whether it had an effect on vascular smooth muscle migration. We also tested whether ADAM33 gene variation had an influence on the extent of atherosclerosis in patients with coronary artery disease. Immunohistochemical analyses showed that ADAM33 was expressed in smooth muscle cells in the arterial wall and that the expression was increased in smooth muscle cells in atheromas. ADAM33 immunostaining on inflammatory cells in atheromas was also observed. Primary vascular smooth muscle cells in culture were also found to express ADAM33. Boyden chamber assays showed that a neutralising antibody against ADAM33 increased the ability of arterial smooth muscle cells to migrate through a reconstituted basement membrane, suggesting that ADAM33 has an inhibitory effect on vascular smooth muscle migration. Moreover, we detected an association between ADAM33 genotype and the extent of atherosclerosis in a large cohort of coronary artery disease patients. These findings suggest that ADAM33 is implicated in the pathogenesis of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.023 | DOI Listing |
J Clin Med
December 2024
Institut für Pathologie und Molekularpathologie, Universitätsspital Zürich, 8091 Zürich, Switzerland.
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common female pelvic neoplasms globally. Treatments may be invasive, such as hysterectomy and myomectomy, non-invasive, such as medical therapy or focused ultrasound, or minimally invasive, such as transcervical radiofrequency ablation (TFA). To date, more than 12,000 women have been treated worldwide using TFA with the Sonata System.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 3, 1015 Lausanne, Switzerland.
Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!