mir-17-92, a cluster of miRNAs in the midst of the cancer network.

Int J Biochem Cell Biol

535 LSA, Division of Cell and Developmental Biology, MCB Department, University of California at Berkeley, Berkeley, CA 94720-3200, USA.

Published: August 2010

MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs (ncRNAs) that function to regulate gene expression at the post-transcriptional level. Although their functions were originally described during normal development, miRNAs have emerged as integral components of the oncogenic and tumor suppressor network, regulating nearly all cellular processes altered during tumor formation. In particular, mir-17-92, a miRNA polycistron also known as oncomir-1, is among the most potent oncogenic miRNAs. Genomic amplification and elevated expression of mir-17-92 were both found in several human B-cell lymphomas, and its enforced expression exhibits strong tumorigenic activity in multiple mouse tumor models. mir-17-92 carries out pleiotropic functions during both normal development and malignant transformation, as it acts to promote proliferation, inhibit differentiation, increase angiogenesis, and sustain cell survival. Unlike most protein coding genes, mir-17-92 is a polycistronic miRNA cluster that contains multiple miRNA components, each of which has a potential to regulate hundreds of target mRNAs. This unique gene structure of mir-17-92 may underlie the molecular basis for its pleiotropic functions in a cell type- and context-dependent manner. Here we review the recent literature on the functional studies of mir-17-92 and highlight its potential impacts on the oncogene network. These findings on mir-17-92 indicate that miRNAs are integrated components of the molecular pathways that regulate tumor development and tumor maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681296PMC
http://dx.doi.org/10.1016/j.biocel.2010.03.004DOI Listing

Publication Analysis

Top Keywords

mir-17-92
8
normal development
8
pleiotropic functions
8
mirnas
5
tumor
5
mir-17-92 cluster
4
cluster mirnas
4
mirnas midst
4
midst cancer
4
cancer network
4

Similar Publications

MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities.

Pathol Res Pract

December 2024

Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia. Electronic address:

T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma.

View Article and Find Full Text PDF

Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy?

Stem Cell Rev Rep

January 2025

Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection.

View Article and Find Full Text PDF

MicroRNAs are involved in breast cancer development and progression, holding potential as biomarkers and therapeutic targets or tools. The roles of miR-20a-5p, a member of the oncogenic miR-17-92 cluster, remain poorly understood in the context of breast cancer. In this study, we elucidate the role of miR-20a-5p in breast cancer by examining its associations with breast cancer risk factors and clinicopathological features, and its functional roles in vitro.

View Article and Find Full Text PDF

Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression.

Gene

January 2025

Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China. Electronic address:

Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis.

View Article and Find Full Text PDF

Chronic venous leg ulcers (CVLUs) comprise the majority of lower-extremity wounds, yet their pathophysiology is not fully understood. While research has shown that microRNAs are an important component of wound inflammation, few have explored the role of microRNAs (miRNAs) in the healing of CVLUs. This scoping review examines miRNAs in CVLUs and the association with wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!