Huntington's disease (HD) is an autosomal dominant disorder caused by expansion of polyglutamine repeats in the huntingtin gene leading to loss of striatal and cortical neurons followed by deficits in cognition and choreic movements. Growth factor delivery to the brain has shown promise in various models of neurodegenerative diseases, including HD, by reducing neuronal death and thus limiting motor impairment. Here we used mouse neural progenitor cells (mNPCs) as growth factor delivery vehicles in the N171-82Q transgenic mouse model of HD. mNPCs derived from the developing mouse striatum were isolated and infected with lentivirus expressing either glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Next, mNPCs(GDNF) or mNPCs(GFP) were transplanted bilaterally into the striatum of pre-symptomatic N171-82Q mice. We found that mNPCs(GDNF), but not mNPCs(GFP), maintained rotarod function and increased striatal neuron survival out to 3months post-transplantation. Importantly, histological analysis showed GDNF expression through the duration of the experiment. Our data show that mNPCs(GDNF) can survive transplantation, secrete GDNF for several weeks and are able to maintain motor function in this model of HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2010.03.005DOI Listing

Publication Analysis

Top Keywords

motor function
8
transgenic mouse
8
mouse model
8
huntington's disease
8
growth factor
8
factor delivery
8
mnpcsgdnf mnpcsgfp
8
vivo delivery
4
gdnf
4
delivery gdnf
4

Similar Publications

Introduction: Congenital lumbar kyphosis is present in about 15% of patients with myelomeningocele. Worsening of deformity with complications such as chronic skin ulcers and bone exposure is common. In patients under 8 years of age, treatment becomes even more challenging: in addition to resecting the apex of the kyphotic deformity, we should ideally stabilize the spine with fixation methods that do not interrupt the growth of the rib cage, associated with the challenging pelvic fixation in this population.

View Article and Find Full Text PDF

A substantial proportion of patients suffer from Post-COVID Syndrome (PCS) with fatigue and impairment of memory and concentration being the most important symptoms. We here set out to perform in-depth neuropsychological assessment of PCS patients referred to the Neurologic PCS clinic compared to patients without sequelae after COVID-19 (non-PCS) and healthy controls (HC) to decipher the most prevalent cognitive deficits. We included n = 60 PCS patients with neurologic symptoms, n = 15 non-PCS patients and n = 15 healthy controls.

View Article and Find Full Text PDF

Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis.

View Article and Find Full Text PDF

The study aimed to assess the feasibility and potential efficacy of a non-motor intervention utilizing motor imagery (MI) and transcranial direct current stimulation (tDCS) to enhance motor function. The research involved a double-blind, randomized, controlled trial with three groups: MIActive, MISham, and Control. Participants engaged in a cognitively demanding obstacle course, with time and prefrontal activation (ΔO2Hb and ΔHHb) measured across three-time points (Baseline, Post-test, 1-week follow-up).

View Article and Find Full Text PDF

Importance: Limb spasticity is a common issue among stroke patients. Transcutaneous electrical acupoint stimulation (TEAS) is recommended as an alternative therapy for managing upper limb spasticity after stroke; however, its potential effects and feasibility remain uncertain.

Objective: To investigate the potential effects and feasibility of TEAS on motor function in patients with upper limb spasticity after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!