Mutations in dynamin-2 (DNM2) cause autosomal dominant centronuclear myopathy (CNM). We report a series of 12 patients from eight families with CNM in whom we have identified a number of novel features that expand the reported clinicopathological phenotype. We identified two novel and five recurrent missense mutations in DNM2. Early clues to the diagnosis include relative weakness of neck flexors, external ophthalmoplegia and ptosis, although these are not present in all patients. Pes cavus was present in two patients, and in another two members of one family there was mild slowing of nerve conduction velocities. Whole-body MRI examination in two children and one adult revealed a similar pattern of involvement of selective muscles in head (lateral pterygoids), neck (extensors), trunk (paraspinal) and upper limbs (deep muscles of forearm). Findings in lower limbs and pelvic region were similar to that previously reported in adults with DNM2 mutations. Two patients presented with dystrophic changes as the predominant pathological feature on muscle biopsies; one of whom had a moderately raised creatine kinase, and both patients were initially diagnosed as congenital muscular dystrophy. DNM2 mutation analysis should be considered in patients with a suggestive clinical phenotype despite atypical histopathology, and MRI findings can be used to guide genetic testing. Subtle neuropathic features in some patients suggest an overlap with the DNM2 neuropathy phenotype. Missense mutations in the C-terminal region of the PH domain appear to be associated with a more severe clinical phenotype evident from infancy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2010.02.016DOI Listing

Publication Analysis

Top Keywords

centronuclear myopathy
8
missense mutations
8
clinical phenotype
8
patients
7
phenotype
5
dnm2
5
expanding clinical
4
clinical pathological
4
pathological mri
4
mri phenotype
4

Similar Publications

European Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels.

Vet Sci

November 2024

Department of Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.

Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts.

View Article and Find Full Text PDF

Neuromuscular disorders (NMD) with neonatal or early infantile onset are usually severe and differ in symptoms, complications, and treatment options. The establishment of a diagnosis relies on the combination of clinical examination, morphological analyses of muscle biopsies, and genetic investigations. Here, we re-evaluated and classified a unique collection of 535 muscle biopsies from NMD infants aged 0-6 months examined over a period of 52 years.

View Article and Find Full Text PDF

Sporadic late-onset nemaline rod myopathy is a rare, acquired, sub-acute, adult-onset myopathy characterized by proximal muscle weakness and nemaline rods in the myofibers. In contrast to its congenital form, the prevalence in adult population is comparatively rare. Herein, we report a case of 60-year-old male who presented with insidious onset proximal muscle weakness with myopathic pattern on electromyography.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to investigate the genetic cause of Nemaline myopathy in a 2-month-old girl who presented with symptoms like persistent phlegm and muscle tone reduction.
  • - Whole exome sequencing revealed that the child carried two harmful variants of the NEB gene, inherited from her asymptomatic parents, confirming a diagnosis of rod-like myopathy.
  • - The findings enhance understanding of the child's condition and provide important information for her family's genetic counseling and reproductive choices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!