The artificial recharge of aquifers has become a valuable tool to increase water resources for drinking water production in many countries. In this work a total of 41 organic pollutants belonging to the classes of pesticides, estrogens, progestogens and volatile organic compounds (VOCs) have been monitored in the water from two artificial recharge plants located in Sweden and Denmark. The results from two sampling campaigns performed in each plant indicate good chemical status of the source water, as the contaminants detected were present at very low levels, far from those established in the legislation as maximum admissible concentrations (when existing) and far from those considered as a risk. Thus, of the 17 pesticides investigated, BAM (2,6-dichlorobenzamide), desethylatrazine, simazine, atrazine, terbuthylazine, diuron, metolachlor, and diazinon were the only compounds detected, and total pesticides levels were below 25ng L(-1), respectively. Estrone-3-sulfate was the only estrogen detected, at concentrations lower than 0.5ng L(-1). Progestogens were not found in any sample. Detected VOCs (benzene, toluene, ethylbenzene, and trichloroethylene) were below 0.04microg L(-1). The efficiency of elimination of these organic contaminants was poor as no significant decrease in their concentrations was observed through the recharge process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2010.02.026DOI Listing

Publication Analysis

Top Keywords

pesticides estrogens
8
estrogens progestogens
8
progestogens volatile
8
volatile organic
8
organic compounds
8
artificial recharge
8
fate selected
4
pesticides
4
selected pesticides
4
organic
4

Similar Publications

Pesticides tend to cause serious reproductive defects, disturbing endocrine functions and reducing fertility, especially in females. The objective of this work was to identify the reprotoxic effects of Ampligo® 150 ZC (AP), a mixture formulation of lambda cyhalothrin and chlorantraniliprole, on the ovary of female rabbits (Oryctolagus cuniculus) and the possible protective effect of co-treatment with thyme essential oil (TEO), extracted from (Thymus vulgaris) species, and vitamin C (vit C). Twenty female rabbits were divided into four equal groups (n=5): Control (distilled water), AP (20mg/ kg bw of the insecticide mixture every other day, by gavage for 28 days), AP+TEO (20mg/ kg bw of AP + 0.

View Article and Find Full Text PDF

The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models.

Ecotoxicol Environ Saf

January 2025

State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:

Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.

View Article and Find Full Text PDF

Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.

View Article and Find Full Text PDF

Background: Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!