The grapevine downy mildew, Plasmopara viticola, is one of the most devastating pathogens in viticulture. Effective control is mainly based on fungicide treatments, although resistance development in this pathogen is reported for a number of fungicides. In this study we describe for the first time the molecular mechanism of resistance to a carboxylic acid amide (CAA) fungicide. We identified a family of four cellulose synthase (CesA) genes containing conserved domains that are found in all processive glycosyltransferases. Phylogenetic analysis revealed their close relationship to the cellulose synthases of Phytophthora sp. Sequencing of the CesA genes in a CAA- resistant and -sensitive field isolate revealed five single nucleotide polymorphisms (SNPs) affecting the amino acid structure of the proteins. SNP inheritance in F(1)-, F(2)- and F(3)-progeny confirmed resistance to be correlated with one single SNP located in PvCesA3. Only if present in both alleles, this SNP led to the substitution of a glycine for a serine residue at position 1105 (G1105S) in the deduced amino acid sequence, thus conferring CAA- resistance. Our data demonstrate that the identified genes are putative cellulose synthases and that one recessive mutation in PvCesA3 causes inheritable resistance to the CAA fungicide mandipropamid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2010.02.009 | DOI Listing |
bioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.
View Article and Find Full Text PDFWater Res
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá 87020-900, Brazil.
Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:
Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!