Background: When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment.
Results: Phage PhiX174 was subjected to both elevated (50 degrees C) and extreme (70 degrees C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50 degrees C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75 degrees C, reduced the survival rate even more. Isolates which survived the initial treatment at 70 degrees C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments.
Conclusions: Using the model organism PhiX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that PhiX174 is capable of survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850354 | PMC |
http://dx.doi.org/10.1186/1471-2148-10-75 | DOI Listing |
The increasing availability of coarse-scale climate simulations and the need for ready-to-use high-resolution variables drive the climate community to the challenge of reducing computational resources and time for downscaling purposes. To this end, statistical downscaling is gaining interest as a potential strategy for integrating high-resolution climate information obtained through dynamical downscaling over limited years, providing a clear understanding of the gains and losses in combining dynamical and statistical downscaling. In this regard, several questions can be raised: (i) what is the performance of statistical downscaling, assuming dynamical downscaling as a reference over a shared time window; (ii) how much the performance of statistical downscaling is affected by changes in the number of years available for training; (iii) how does the climate normal considered for the training affect the predictions.
View Article and Find Full Text PDFSci Rep
January 2025
Heidelberg University, Medical Faculty Heidelberg, Center for Pediatrics and Adolescent Medicine, Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
The goal of this analysis is to describe seasonal disaster patterns in Central Europe in order to raise awareness and improve hospital disaster planning and resilience, particularly during peak events. Hospitals are essential pillars of a country's critical infrastructure, vital for sustaining healthcare services and supporting public well-being-a key issue of national security. Disaster planning for hospitals is crucial to ensure their functionality under special circumstances.
View Article and Find Full Text PDFNat Commun
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.
Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).
View Article and Find Full Text PDFInt J Surg Case Rep
December 2024
Department of Sports Medicine, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan Province, China. Electronic address:
Introduction And Importance: Calcific tendinitis occurring in the popliteal tendon is extremely rare and has rarely been reported in the past. This case describes a patient who underwent arthroscopic surgery to remove the calcification of the popliteal tendon and achieved satisfactory results after surgery, providing valuable evidence for the feasibility of arthroscopic treatment of calcific tendinitis of the popliteal tendon.
Case Presentation: The patient was a 55-year-old female who was admitted to the hospital due to right knee pain and limited mobility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!