Oligodeoxyribonucleotide glycoconjugates bearing two trivalent glycoclusters have been synthesized by two alternative methods based on solid-supported oximation of aminooxy functionalized oligonucleotides with glycoclusters constructed by click chemistry. In more detail, the trivalent glycoclusters (5 and 6) bearing three sugar pendants were first assembled by treating a 4-[tri-O-propargylpentaerythrityloxy]benzaldehyde scaffold with methyl 6-azido-6-deoxyglycopyranoside under the click reaction conditions. Two phosphoramidite reagents containing a phthaloyl protected aminooxy function, viz., 2-cyanoethyl N,N-diisopropylphosphoramidites derived from 3-[3,5-bis(phthalimidoxymethyl)phenoxy]propanol (12) and 5-(4,4'-dimethoxytrityl)-1,2-dideoxy-1-C-(2-phthalimidoxyethyl)-beta-d-erythro-pentofuranose (16), were synthesized and incorporated as branching units in appropriate places of the oligonucleotide chains. On using 12, the phthaloyl protections of the branching unit were removed and two identical glycoclusters were attached via oxime linkage to the 5'-terminus of the support-bound oligonucleotide chain. With branching unit 16, the phosphoramidite coupling and the oximation were carried out alternately, allowing introduction of two dissimilar trivalent glycoclusters close to the 3'-end of the oligonucleotide chain. The products (20, 26) were released and deprotected by ammonolysis and purified by HPLC chromatography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc900529g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!