How to predict diffusion of medium-sized molecules in polymer matrices. From atomistic to coarse grain simulations.

J Mol Model

Biomechanics Group, Department of Bioengineering, Politecnico di Milano, Via Golgi 39, 20133 Milan, Italy.

Published: December 2010

The normal diffusion regime of many small and medium-sized molecules occurs on a time scale that is too long to be studied by atomistic simulations. Coarse-grained (CG) molecular simulations allow to investigate length and time scales that are orders of magnitude larger compared to classical molecular dynamics simulations, hence providing a valuable approach to span time and length scales where normal diffusion occurs. Here we develop a novel multi-scale method for the prediction of diffusivity in polymer matrices which combines classical and CG molecular simulations. We applied an atomistic-based method in order to parameterize the CG MARTINI force field, providing an extension for the study of diffusion behavior of penetrant molecules in polymer matrices. As a case study, we found the parameters for benzene (as medium sized penetrant molecule whose diffusivity cannot be determined through atomistic models) and Poly (vinyl alcohol) (PVA) as polymer matrix. We validated our extended MARTINI force field determining the self diffusion coefficient of benzene (2.27·10⁻⁹m² s⁻¹) and the diffusion coefficient of benzene in PVA (0.263·10⁻¹² m² s⁻¹). The obtained diffusion coefficients are in remarkable agreement with experimental data (2.20·10⁻⁹m² s⁻¹ and 0.25·10⁻¹² m² s⁻¹, respectively). We believe that this method can extend the application range of computational modeling, providing modeling tools to study the diffusion of larger molecules and complex polymeric materials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-010-0687-7DOI Listing

Publication Analysis

Top Keywords

polymer matrices
12
medium-sized molecules
8
molecules polymer
8
normal diffusion
8
molecular simulations
8
classical molecular
8
martini force
8
force field
8
study diffusion
8
diffusion coefficient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!