Purpose: Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors activated by ligands of the nuclear hormone receptor superfamily. The activation of PPARgamma regulates inflammation by downregulating the production of Th2 type cytokines and eosinophil function. In addition, a range of natural substances, including arachidonate pathway metabolites such as 15-hydroxyeicosatetranoic acid (15-HETE), strongly promote PPARG expression. Therefore, genetic variants of the PPARG gene may be associated with the development of aspirin-intolerant asthma (AIA). We investigated the relationship between single nucleotide polymorphism (SNP) of the PPARG gene and AIA.

Methods: Based on the results of an oral aspirin challenge, asthmatics (n=403) were categorized into two groups: those with a decrease in FEV(1) of 15% or greater (AIA) or less than 15% (aspirin-tolerant asthma, ATA). We genotyped two single nucleotide polymorphisms in the PPARG gene from Korean asthmatics and normal controls (n=449): +34C>G (Pro12Ala) and +82466C>T (His449His).

Results: Logistic regression analysis showed that +82466C>T and haplotype 1 (CC) were associated with the development of aspirin hypersensitivity in asthmatics (P=0.04). The frequency of the rare allele of +82466C>T was significantly higher in AIA patients than in ATA patients in the recessive model [P=0.04, OR=3.97 (1.08-14.53)]. In addition, the frequency of PPARG haplotype 1 was significantly lower in AIA patients than in ATA patients in the dominant model (OR=0.25, P=0.04).

Conclusions: The +82466C>T polymorphism and haplotype 1 of the PPARG gene may be linked to increased risk for aspirin hypersensitivity in asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831569PMC
http://dx.doi.org/10.4168/aair.2009.1.1.30DOI Listing

Publication Analysis

Top Keywords

pparg gene
16
peroxisome proliferator-activated
8
proliferator-activated receptors
8
hypersensitivity asthmatics
8
associated development
8
single nucleotide
8
aspirin hypersensitivity
8
aia patients
8
patients ata
8
ata patients
8

Similar Publications

Object: Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA.

View Article and Find Full Text PDF

Identification of key genes related to growth of largemouth bass () based on comprehensive transcriptome analysis.

Front Mol Biosci

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Introduction: Largemouth bass is an economically important farmed freshwater fish species that has delicious meat, no intermuscular thorns, and rapid growth rates. However, the molecular regulatory mechanisms underlying the different growth and developmental stages of this fish have not been reported.

Methods: In this study, we performed histological and transcriptomic analyses on the brain and dorsal muscles of largemouth bass at different growth periods.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a highly heterogeneous disease with varying remyelination potential across individuals and between lesions. However, the molecular mechanisms underlying the potential to remyelinate remain poorly understood. In this study, we aimed to take advantage of the intrinsic heterogeneity in remyelinating capacity between MS donors and lesions to uncover known and novel pro-remyelinating molecules for MS therapies.

View Article and Find Full Text PDF

Shared genetic architecture of type 2 diabetes with muscle mass and function and frailty reveals comorbidity etiology and pleiotropic druggable targets.

Metabolism

December 2024

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Background: Delineating the shared genetic architecture of type 2 diabetes with muscle mass and function and frailty is essential for unraveling the common etiology and developing holistic therapeutic strategies for these co-existing conditions.

Methods: In this genome-wide pleiotropic association study, we performed multi-level pairwise trait pleiotropic analyses using genome-wide association study summary statistics from up to 461,026 European ancestry individuals to dissect the shared genetic factors and causal relationships of type 2 diabetes and seven glycemic traits with four muscle mass- and function-related phenotypes and the frailty index.

Results: We first identified 27 pairs with significant genetic correlations through the linkage disequilibrium score regression and high-definition likelihood analysis.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) plays an anti-inflammatory role in autoimmune disease. However, its specific function in ankylosing spondylitis (AS) remain unclear. This study aimed to investigate the potential role of IDO1 in AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!