Imaging local electrochemical current via surface plasmon resonance.

Science

Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.

Published: March 2010

We demonstrated an electrochemical microscopy technique based on the detection of variations in local electrochemical current from optical signals arising from surface plasmon resonance. It enables local electrochemical measurements (such as voltammetry and amperometry) with high spatial resolution and sensitivity, because the signal varies with current density rather than current. The imaging technique is noninvasive, scanning-free, and fast, and it constitutes a powerful tool for studying heterogeneous surface reactions and for analyzing trace chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1186476DOI Listing

Publication Analysis

Top Keywords

local electrochemical
12
electrochemical current
8
surface plasmon
8
plasmon resonance
8
imaging local
4
electrochemical
4
current
4
current surface
4
resonance demonstrated
4
demonstrated electrochemical
4

Similar Publications

Mg-B-O Coated P2-Type Hexagonal NaMnNiO as a High-Performance Cathode for Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.

P2-type NaMnNiO as the cathode for sodium-ion batteries, has a relatively high theoretical specific capacity, but its unstable crystal structure and undesirable phase transitions lead to rapid capacity decay. In this work, Mg-B-O coated NaMnNiO microspheres have been synthesized via a liquid-phase method based on solvothermal synthesized NaMnNiO. The Mg-B-O coating layer significantly improves the electrochemical performance, including specific capacity, rate capability, and cycle stability.

View Article and Find Full Text PDF

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

Fluorine-Free Ion-Selective Membrane with Enhanced Mg Transport for Mg-Organic Batteries.

ACS Nano

January 2025

Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston, University of Houston, Houston, Texas 77204, United States.

Magnesium batteries offer a safer alternative for next-generation battery technology due to their insusceptibility to dendrite deposition. Selective membranes tailored for magnesium-ion conduction will unlock further technological advancement. Herein, we demonstrate fluorine-free magnesiated sulfonated poly(ether ether ketone) (Mg-SPEEK) selective membranes capable of facilitating magnesium-ion conduction while effectively rejecting soluble organic species.

View Article and Find Full Text PDF

Targeted Docking of Localized Hydrogen Bond for Efficient and Reversible Zinc-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.

Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.

View Article and Find Full Text PDF

In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!