Escherichia coli strains of serotype O113 : H21 are commonly described as belonging to a Shiga toxin (Stx)-producing E. coli (STEC) pathotype worldwide. Albeit this STEC serotype is frequently identified among cattle and other domestic animals, to the best of our knowledge no human infections associated with STEC O113:H21 have been registered in Brazil to date. Here, we report the virulence profile and genetic relatedness of a collection of O113:H21 E. coli strains mainly isolated from the animal reservoir aimed at determining their potential as human pathogens. The strains from the animal reservoir (n=34) were all classified as STEC, whereas the few isolates recovered so far from human diarrhoea (n=3) lacked stx genes. Among the STEC, the stx2d-activatable gene was identified in 85% of the strains that also carried lpfAO113, iha, saa, ehxA, subAB, astA, cdt-V, espP, espI and epeA; the human strains harboured only lpfAO113, iha and astA. All the strains except one, isolated from cattle, were genetically classified as phylogenetic group B1. High mass plasmids were observed in 25 isolates, but only in the STEC group were these plasmids confirmed as the STEC O113 megaplasmid (pO113). Many closely related subgroups (more than 80% similarity) were identified by PFGE, with human isolates clustering in a subgroup separate from most of the animal isolates. In conclusion, potentially pathogenic O113:H21 STEC isolates carrying virulence markers in common with O113:H21 clones associated with haemolytic uraemic syndrome cases in other regions were demonstrated to occur in the natural reservoir in our settings, and therefore the risk represented by them to public health should be carefully monitored.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.015263-0DOI Listing

Publication Analysis

Top Keywords

coli strains
12
strains isolated
12
animal reservoir
12
genetic relatedness
8
o113 h21
8
escherichia coli
8
isolated animal
8
human infections
8
stec
8
stec isolates
8

Similar Publications

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is a mosquito-borne infectious disease caused by the Japanese encephalitis virus (JEV). There is currently no effective treatment for JE, and all approved Japanese encephalitis vaccine products originated from the JEV genotype III (GIII). In recent years, JEV genotype I (GI) has gradually replaced GIII as the dominant genotype, and a new symptom of peripheral nerve injury (PNI) caused by JEV NX1889 strain has attracted wide attention, in which JEV envelope (E) protein may be involved in early peripheral nerve injury.

View Article and Find Full Text PDF

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.

View Article and Find Full Text PDF

Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!