During meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1. It has been proposed that Mek1 establishes the bias by creating a barrier to sister chromatid repair, as distinct from enforcing strand invasion with the homologue. We looked for evidence that Mek1 positively stimulates strand invasion of the homologue. This was done by analysing repair of DSBs induced by the VMA1-derived endonuclease (VDE) and flanked by directly repeated sequences that can be used for intrachromatid single-strand annealing (SSA). SSA competes with interhomologue strand invasion significantly more successfully when Mek1 function is lost. We suggest the increase in intrachromosomal SSA reflects an opportunistic default repair pathway due to loss of a MEK1 stimulated bias for strand invasion of the homologous chromosome. Making use of an inhibitor sensitive mek1-as1 allele, we found that Mek1 function influences the repair pathway throughout the first4-5 h of meiosis. Perhaps reflecting a particular need to create bias for successful interhomologue events before chromosome pairing is complete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910038PMC
http://dx.doi.org/10.1093/nar/gkq137DOI Listing

Publication Analysis

Top Keywords

strand invasion
16
evidence mek1
8
mek1 positively
8
sister chromatid
8
chromatid repair
8
invasion homologue
8
mek1 function
8
repair pathway
8
repair
7
mek1
6

Similar Publications

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Metastatic Sclerosing Epithelioid Fibrosarcoma at Diagnosis: A Case Report.

Cureus

December 2024

Pathological Anatomy, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, PRT.

Sclerosing epithelioid fibrosarcoma (SEF) is a rare and aggressive neoplasm composed of epithelioid cells arranged in strands and nests embedded in a highly sclerotic collagenous stroma. We report a case of a 36-year-old man who started with lumbar pain, with extension to both legs, night sweats, and weight loss. He underwent magnetic resonance imaging (MRI) of the lumbar spine; computed tomography (CT) scan of the chest, abdomen, and pelvis; and [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scan.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Leveraging RNA interference technology for selective and sustainable crop protection.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China.

Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!