Positive influence of poised potential on microbial fuel cell (MFC) performance was observed with increase in the applied potential up to 600 mV and decreased thereafter. Higher power output (79.33 mW/m(2)) was observed at 600 mV poised potential under open circuit operation (OC). Closed circuit operation (CC) showed almost negligible power output due to continuous electron discharge against an external load (100 Omega). However, CC operation resulted in the higher substrate (chemical oxygen demand (COD)) degradation [61.23% (control); 70.46% (OC; 600 mV); 74.15% (CC; 600 mV)] and total dissolved solids (TDS) removal [29.17% (control); 43.75% (OC; 600 mV); 72.92% (CC; 600 mV)] efficiencies compared to OC. Electron discharge and energy conversion efficiency was also observed to be higher with 600 mV poised potential. Poising potential showed additional redox couples (-0.29+/-0.05 mV) on cyclic voltammetry. Application of poised potential during startup phase will help to enrich electrochemically active consortia on anode resulting in improved performance of MFC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.02.028DOI Listing

Publication Analysis

Top Keywords

poised potential
20
microbial fuel
8
fuel cell
8
power output
8
600 poised
8
circuit operation
8
electron discharge
8
600 mv]
8
potential
7
0
7

Similar Publications

Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3).

Materials (Basel)

January 2025

Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain.

LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin.

View Article and Find Full Text PDF

The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.

View Article and Find Full Text PDF

Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy.

Nanomaterials (Basel)

January 2025

Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.

Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems.

View Article and Find Full Text PDF

This study aims to explore the current state of research and the applicability of artificial intelligence (AI) at various stages of post-traumatic stress disorder (PTSD), including prevention, diagnosis, treatment, patient self-management, and drug development. We conducted a bibliometric analysis using software tools such as Bibliometrix (version 4.1), VOSviewer (version 1.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a rapidly transforming drug discovery and development process, significantly impacting the pharmaceutical industry and enhancing human health. This review article examines the tremendous role of AI in analyzing complex biological data, optimizing research processes, and reducing costs of production. Implementation of AI in the pharmaceutical sector can store a vast dataset of manufacturing processes, identify potential disease targets, simulate physiological conditions, and predict drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!