Conventional technologies for the removal/remediation of toxic metal ions from wastewaters are proving expensive due to non-regenerable materials used and high costs. Biosorption is emerging as a technique offering the use of economical alternate biological materials for the purpose. Functional groups like carboxyl, hydroxyl, sulphydryl and amido present in these biomaterials, make it possible for them to attach metal ions from waters. Every year, large amounts of straw and bran from Triticum aestivum (wheat), a major food crop of the world, are produced as by-products/waste materials. The purpose of this article is to review rather scattered information on the utilization of straw and bran for the removal/minimization of metal ions from waters. High efficiency, high biosorption capacity, cost-effectiveness and renewability are the important parameters making these materials as economical alternatives for metal removal and waste remediation. Applications of available adsorption and kinetic models as well as influences of change in temperature and pH of medium on metal biosorption by wheat straw and wheat bran are reviewed. The biosorption mechanism has been found to be quite complex. It comprises a number of phenomena including adsorption, surface precipitation, ion-exchange and complexation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.02.030DOI Listing

Publication Analysis

Top Keywords

metal ions
16
materials purpose
8
ions waters
8
straw bran
8
metal
6
biosorption
5
biosorption heavy
4
heavy metal
4
ions
4
wheat
4

Similar Publications

The discovery of new structures is very important for metal-organic framework (MOF) adsorbents and their application in gas separation, where the design of ligands and the selection of metal ions play a decisive role. Herein, we synthesized two isoreticular Zn-MOFs, UPC-250 and UPC-251, composed of imidazole-based tricarboxylic acid ligands and binuclear zinc clusters. The pore environment was regulated via modifying fluorine atoms at different positions of ligands, and one-step purification of ethylene from acetylene/ethylene/ethane ternary mixture was realized in UPC-251.

View Article and Find Full Text PDF

The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.

View Article and Find Full Text PDF

Amino acids, as the fundamental constituents of proteins and enzymes, play a vital role in various biological processes. Amino acids such as histidine, cysteine, and methionine are known to coordinate with metal ions in proteins and enzymes, playing critical roles in their structure and function. In metalloproteins, metal ions are often coordinated by specific amino acid residues, contributing to the protein's stability and catalytic activity.

View Article and Find Full Text PDF

Amino acid modified copper-based metal organic polyhedral with higher peroxidase activity for potassium guaiacol sulfonate detection.

Sci Rep

January 2025

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming, China.

It has been reported some nanozymes could be used as a substitute for natural enzyme to detect HO to some extent. However, the low catalytic effect of these materials limited their further application fields. Hence, to increase the catalytic activity of nanozymes was a hot research topic and many methods have been reported.

View Article and Find Full Text PDF

Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation.

Nat Commun

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.

High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!