Release of inflammatory pain mediators from peripheral sensory afferent endings contributes to the development of a positive feedback cycle resulting in chronic inflammation and pain. Botulinum neurotoxin type A (BoNT-A) blocks exocytosis of neurotransmitters and may therefore block the release of pain modulators in the periphery. Subcutaneous administration of BoNT-A (2.5, 5 and 10U) reduced plasma extravasation (PE) caused by electrical stimulation of the saphenous nerve or capsaicin in the rat hindpaw skin (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A also reduced blood flow changes evoked by saphenous nerve stimulation (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A had no effect on PE induced by local injection of substance P (SP) or vasodilation induced by local CGRP injection. Although BoNT-A is an effective treatment for a wide range of painful conditions, the toxin's large size necessitates that it be injected at numerous sites. We found that a short synthetic peptide (TD-1) can facilitate effective transdermal delivery of BoNT-A through intact skin. Coadministration of TD-1 and BoNT-A to the hindpaw skin resulted in a significant reduction in PE evoked by electrical stimulation. The findings show that BoNT-A can be administered subcutaneously or topically with a novel transdermal delivery peptide to reduce inflammation produced by activating nociceptors in the skin. Peptide-mediated delivery of BoNT-A is an easy and non-invasive way of administering the toxin that may prove to be useful in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2010.02.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!