Chlamydophila (Cp.) psittaci and avian pathogenic Escherichia (E.) coli infections contribute to the respiratory disease complex observed in turkeys. Secondary infection with E. coli exacerbates Cp. psittaci pathogenicity and augments E. coli excretion. The innate immune response initiated by both pathogens in their avian host is unknown. We therefore determined the cytokine responses following Cp. psittaci infection and E. coli superinfection of avian monocytes/macrophages by examining gene transcripts of IL-1beta, IL-6, CXCLi2 (IL-8), CXCLi1 (K60), IL-10, IL-12alpha/beta, IL-18, TGF-beta4 and CCLi2 at 4h post-inoculation with different Cp. psittaci strains or 4h post-treatment with avian E. coli LPS of Cp. psittaci pre-infected HD11 cells. Cp. psittaci strains used were 84/55 and 92/1293 (highly virulent), CP3 (low virulent) and 84/2334 (phylogenetically intermediate between Cp. psittaci and Chlamydophila abortus). At 4h post chlamydial infection, an increased expression of IL-1beta and IL-6 as well as CXCLi2, CXCLi1 and CCLi2 was observed compared to levels in uninfected HD11 controls. This effect was less pronounced for the milder CP3 strain. The pro-inflammatory response of Cp. psittaci infected cells to E. coli LPS was significantly lowered compared to uninfected controls, especially when the cells were pre-infected with highly virulent Cp. psittaci strains. In both experiments, exceptionally high IL-10 and no TGF-beta4 responses were observed, and we propose that this could induce macrophage deactivation and NF-kappaB suppression. Consequently, pro-inflammatory and Th1-promoting responses to both the primary Cp. psittaci infection and E. coli would be inhibited, thus explaining the observed aggravated in vivo pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2010.03.001 | DOI Listing |
Sci Rep
January 2025
Cellulose and Paper Department, National Research Centre, Cairo, 12622, Egypt.
Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt.
The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
Department of Medical Microbiology, PGIMER, Chandigarh, Chandigarh, 160012, India.
Cefepime-tazobactam (FEP-TAZ) consists of cefepime combined with tazobactam, a penicillanic acid-sulfone recognized as an established beta-lactamase inhibitor. This study aims to investigate the in-vitro effectiveness of FEP-TAZ against cefepime-resistant clinical isolates of Escherichia coli (E. coli).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: Changes in neuroinflammatory tone have been shown to modulate neuroimmune responses to Alzheimer's disease (AD) pathology and shape disease outcomes, however, extrinsic factors that modify neuroimmune activation remain poorly understood. The gut microbiome is one such factor, with the ability to shape peripheral and central immune activation, as well as AD pathologies. AD patients display unique changes in microbiome composition, however, the link between specific AD-associated gut bacteria, neuroinflammatory tone, and AD outcomes remains to be elucidated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!