Mitochondrial-driven sustained active water vapour absorption (WVA) in the firebrat, Thermobia domestica (Packard), during development and the moulting cycle.

J Insect Physiol

School of Biological Sciences, University of East Anglia, University Plain, Norwich NR4 7TJ, Norfolk, UK.

Published: May 2010

Rapid pre-functional mitochondrial biogenesis in the short-lived first-instar nymph occurs in the cells of the developing posterior rectal sacs which when mature are the organs believed to be responsible for sustained active water vapour absorption (WVA) in the firebrat Thermobia domestica (Packard). During the second instar, the mitochondria migrate apically and begin to associate with deep portasome-studded infolds of the apical plasma membrane (apm), just as WVA starts sporadically. By mid to late in the third instar the mature mitochondria-apm apical complex is fully developed, with elongated tubular mitochondria vertically packed hexagonally in transverse section and adpressed to the deeply pleated infolds of the apm, giving the greatest known concentration of mitochondria. This coincides with peak mass-specific WVA. During moults, WVA temporarily ceases as the sac cells secrete a new cuticle overlying the sac epithelium. Their apical complex fully regresses. Mitochondria migrate perinuclearly. The apm is pinched-off into numerous small portasome-studded pouches which remain sequestered within the cytoplasm. Towards the end of the moult the apm pouches reassemble into deeply pleated infolds into which the mitochondria migrate and elongate, rapidly re-establishing the hexagonal array of the apical complex. This coincides with the recommencement of WVA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2010.02.005DOI Listing

Publication Analysis

Top Keywords

mitochondria migrate
12
apical complex
12
sustained active
8
active water
8
water vapour
8
vapour absorption
8
absorption wva
8
wva firebrat
8
firebrat thermobia
8
thermobia domestica
8

Similar Publications

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Hydrogen sulfide sustains mitochondria functions via targeting mitochondria fission regulator 1 like protein to restore human cytotrophoblast invasion and migration.

Int J Biol Macromol

January 2025

Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Translational Medical Research Centre, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China. Electronic address:

Hydrogen sulfide (HS) is bioactive in mammals. Reduced HS was observe in pregnancy complications, pre-eclampsia (PE). Our previous data demonstrated that low dose of H2S enhanced cytotrophoblast (CTB) invasion and migration via mitochondria dynamics without knowing the mechanisms.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Cells undergo significant epigenetic and phenotypic change during the epithelial-to-mesenchymal transition (EMT), a process observed in development, wound healing, and cancer metastasis. EMT confers several advantageous characteristics, including enhanced migration and invasion, resistance to cell death, and altered metabolism. In disease, these adaptations could be leveraged as therapeutic targets.

View Article and Find Full Text PDF

Neutrophil extracellular traps in tumor metabolism and microenvironment.

Biomark Res

January 2025

Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.

Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!