The FoxO transcription factors may be involved in the antiaging effect of calorie restriction (CR) in mammals. To test the hypothesis, we used FoxO1 knockout heterozygotic (HT) mice, in which the FoxO1 mRNA level was reduced by 50%, or less, of that in wild-type (WT) mouse tissues. The WT and HT mice were fed ad libitum (AL) or 30% CR diets from 12 weeks of age. Aging- and CR-related changes in body weight, food intake, blood glucose, and insulin concentrations were similar between the WT and HT mice in the lifespan study. The response to oxidative stress, induced by intraperitoneal injection of 3-nitropropionic acid (3-NPA), was evaluated in the liver and hippocampus at 6 months of age. Several of the selected FoxO1-target genes for cell cycle arrest, DNA repair, apoptosis, and stress resistance were up-regulated in the WT-CR tissues after 3-NPA injection, while the effect was mostly diminished in the HT-CR tissues. Of these gene products, we focused on the nuclear p21 protein level in the liver and confirmed its up-regulation only in the WT-CR mice in response to oxidative stress. The lifespan did not differ significantly between the WT and HT mice in AL or CR conditions. However, the antineoplastic effect of CR, as indicated by reduced incidence of tumors at death in the WT-CR mice, was mostly abrogated in the HT-CR mice. The present results suggest a role for FoxO1 in the antineoplastic effect of CR through the induction of genes responsible for protection against oxidative and genotoxic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1474-9726.2010.00563.x | DOI Listing |
Nutrients
January 2025
Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.
Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.
View Article and Find Full Text PDFNutrients
January 2025
Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.
Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy.
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase.
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
: Anorexia nervosa (AN) is a complex psychiatric disorder characterized by an extreme fear of gaining weight, leading to severe calorie restriction and weight loss. Beyond its psychiatric challenges, AN has significant physical consequences affecting multiple organ systems. Recent research has increasingly focused on the interplay between autoantibodies, oxidative stress, and nutritional state in this condition.
View Article and Find Full Text PDFNat Commun
January 2025
WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore.
Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!