In order to evaluate the transferability of existing empirical force fields for all-atom molecular simulations of protein adsorption behavior, we have developed and applied a method to calculate the adsorption free energy (DeltaG(ads)) of model peptides on functionalized surfaces for comparison with available experimental data. Simulations were conducted using the CHARMM program and force field using a host-guest peptide with the sequence TGTG-X-GTGT (where G and T are glycine and threonine amino acid residues, respectively, with X representing valine, threonine, aspartic acid, phenylalanine or lysine) over nine different functionalized alkanethiol self-assembled monolayer (SAM) surfaces with explicitly represented solvent. DeltaG(ads) was calculated using biased-energy replica exchange molecular dynamics to adequately sample the conformational states of the system. The simulation results showed that the CHARMM force-field was able to represent DeltaG(ads) within 1 kcal/mol of the experimental values for most systems, while deviations as large as 4 kcal/mol were found for others. In particular, the simulations reveal that CHARMM underestimates the strength of adsorption on the hydrophobic and positively charged amine surfaces. These results clearly show that improvements in force field parameterization are needed in order to accurately represent interactions between amino acid residues and functional groups of a surface and they provide a means for force field evaluation and modification for the eventual development and validation of an interfacial force field for the accurate simulation of protein adsorption behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868960 | PMC |
http://dx.doi.org/10.1021/la904415d | DOI Listing |
Phys Med
January 2025
IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy.
Purpose: Total marrow (lymph-node) irradiation (TMI/TMLI) is a radiotherapy technique irradiating the whole body of a patient. The limited couch travel range in modern linacs (130-150 cm) forces to split the TMI/TMLI delivery into two plans with opposite orientation. A dedicated field junction is necessary to achieve satisfactory target coverage in the overlapping region of the two plans.
View Article and Find Full Text PDFUltrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2BX, United Kingdom.
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!