Variable pressure and temperature conductivity measurements on the bisthiaselenazolyl radical dimer [1a](2) have established the presence of a weakly metallic state over the pressure range 5-9 GPa. To explore the origin of this metallization we have examined the crystal and molecular structure of [1a](2) as a function of pressure. At ambient pressure the dimer consists of two radicals linked by a hypervalent 4-center 6-electron S...Se-Se...S sigma-bond into an essentially coplanar arrangement. The dimers are packed in cross-braced slipped pi-stack arrays running along the x-direction of the monoclinic (space group P2(1)/c) unit cell. Pressurization to 4 GPa induces little change in the molecular structure of [1a](2) or in the slipped pi-stack crystal architecture. Near 5 GPa, however, stress on the dimer leads to buckling of the two halves of the molecule and a contraction in the metrics of the S...Se-Se...S unit. These structural changes can be understood in terms of an electronic configurational switch from a 4-center 6-electron sigma-bonded dimer to a more conventional pi-bonded arrangement. At the same time the slipped pi-stack arrays undergo a concertina-like compression, and the crystal structure experiences highly anisotropic changes in cell dimensions. DFT calculations on the molecular electronic structure of the dimer indicate a marked decrease in the HOMO-LUMO gap as the dimer buckles. Related solid-state calculations indicate a rapid closure of the valence/conduction band gap in the same pressure region and the formation of a quasi-metallic state. Metallization of [1a](2) thus arises as much from intramolecular changes, which give rise to a collapse of the HOMO-LUMO gap and near coalescence of the valence and conduction bands, as from increased intermolecular interactions, which cause widening and overlap of the band edges.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja100216cDOI Listing

Publication Analysis

Top Keywords

slipped pi-stack
12
radical dimer
8
molecular structure
8
structure [1a]2
8
4-center 6-electron
8
pi-stack arrays
8
homo-lumo gap
8
dimer
7
pressure
5
metallization hypervalent
4

Similar Publications

Spin-casting of molecularly doped polymer solution mixtures is one of the commonly used methods to obtain conductive organic semiconductor films. In spin-casted films, electronic interaction between the dopant and polymer is one of the crucial factors that dictates the doping efficiency. Here, we investigate excitonic couplings using ultrafast two-dimensional electronic spectroscopy to examine the different types of electronic interactions in ion pairs of the prototype FTCNQ-doped P3HT polymer system in a precursor solution mixture for spin-casting.

View Article and Find Full Text PDF

Four Slip-Stacked Arrangements, Three Types of Photophysics: Crystal Structure and Solid-State Fluorescence of 3,6-Diaryl Substituted Furo[3,4-c]furanone Polymorphs and Regioisomers.

Chempluschem

August 2023

Department of Organic Technology Institute of Organic Chemistry and Technology Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10, Pardubice, Czech Republic.

Six symmetrical 3,6-diaryl (aryl=phenyl, 2-, 3- and 4-tolyl, 2,4- and 3,5-xylyl) substituted furo[3,4-c]furanones (DFF) were synthesized. The computational analysis, based on density functional theory, found eight possible centrosymmetrical slipped π-stack arrangements, formed according to electron repulsion minimization principle, as for previously reported for π-isoelectronic diketopyrrolopyrroles (DPP). One of these slipped stack arrangements was found to form infinite columns in the crystals of a new polymorph of parent phenyl derivative (with centre-to-centre distance CC=6.

View Article and Find Full Text PDF

Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change.

View Article and Find Full Text PDF

The heterocyclic bisdithiazolyl radical 1b (R1 = Me, R2 = F) crystallizes in two phases. The α-phase, space group P2₁/n, contains two radicals in the asymmetric unit, both of which adopt slipped π-stack structures. The β-phase, space group P2₁/c, consists of cross-braced π-stacked arrays of dimers in which the radicals are linked laterally by hypervalent 4-center 6-electron S···S-S···S σ-bonds.

View Article and Find Full Text PDF

Bisdithiazolyl radical spin ladders.

Inorg Chem

February 2013

Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

A series of four bisdithiazolyl radicals 1a-d (R(1) = Pr, Bu, Pn, Hx; R(2) = F) has been prepared and characterized by X-ray crystallography. The crystal structure of 1a (R(1) = Pr) belongs to the tetragonal space group P42(1)m and consists of slipped π-stack arrays of undimerized radicals packed about 4 centers running along the z-direction, an arrangement identical to that found for 1 (R(1) = Et; R(2) = F). With increasing chain length of the R(1) substituent, an isomorphous set 1b-d is generated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!