The root-knot nematode, Meloidogyne incognito, remains to be one of the most important constraints in agricultural production worldwide. However, reports showed that root-knot nematode (RKN) population can be suppressed by addition of organic amendments. A greenhouse microplot experiment was conducted to determine if locally available organic amendments would reduce RKN population and improve the growth and yield of more susceptible and less susceptible carrot cultivars in comparison with the farmers' practice. Residues of broccoli, chicken manure and Trichoderma inoculant were incorporated into the soil artificially infested with root-knot nematodes. Untreated microplots were provided as controls. Three months after transplanting, nematodes were recovered from the soil using the modified Baermann-tray technique and from the roots using staining technique. The number of root-knot nematodes was counted under the stereoscopic microscope. In the more susceptible cultivar New Kuroda, significantly lowest number of second stage juveniles (J2's) was recovered from the soil incorporated with broccoli left-over materials and Trichoderma inoculant while chicken manure-amended soil had the most number of J2's. Galls and egg masses in secondary roots were highest in unamended-inoculated soil which was significantly different from broccoli-amended soil with solarisation and Trichoderma inoculant. No significant differences were obtained among the treatments in the less susceptible cultivar Chunhong. The yield was significantly highest in broccoli-amended soil with solarisation and Trichoderma inoculant but no significant difference existed between the two cultivars tested. In general, the treatments with broccoli residues and Trichoderma inoculant were able to decrease root-knot nematode population and significantly increase the yield relative to untreated soil, however, differences between the two cultivars were not significant.
Download full-text PDF |
Source |
---|
Plants (Basel)
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFFront Microbiol
December 2024
Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India.
The Western Ghats of India is recognized as one of the world's eight "hottest hotspots" of biological diversity. -a well-known biocontrol agent, was explored from this hotspot. A total of 260 spp.
View Article and Find Full Text PDFMicrobes Environ
January 2025
Faculty of Agriculture, Tottori University.
Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root.
View Article and Find Full Text PDFFront Plant Sci
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Hairy vetch ( Roth), a leguminous plant with nitrogen-fixing ability, is used as a cover crop and has the potential to suppress weeds and plant diseases. The microbial composition, particularly fungal endophytes, which may be related to the beneficial functions of this crop, has not been previously studied. In this study, we analyzed the diversity and function of culturable fungal endophytes associated with hairy vetch from eight locations across Japan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!