Hydrogen peroxides are commonly used in greenhouses for cleaning purposes and disinfection of irrigation water systems, i.e., to prevent clogging by duckweed (Lemna minor), algae and other (micro)organisms. This use contains a potential risk of involuntary contact to the plants, e.g., to roots through irrigation or to the plant leaves through accidental droplets (spraying mist). To help growers to maximize disinfection with minimal risks, the efficacy and plant safety of a variety of commercial available peroxide formulations were compared, i.e., pure peroxide products, peroxide products with additives: Ag, performic acid, peracetic acid and sorbitol. Starting from pure (clean and without fertilizers) irrigation water the peroxides with Ag-stabilisers were most stable and most effective for algae prevention. In screenings for the curative effect on algae, duckweed and bacteria the best results were obtained with peroxide formulations with performic acid. In plant safety tests on potted Ficus benjamina, sprays and irrigations above the plants gave no toxicity till 500 ppm a.i.; irrigations below the plants didn't show toxicity but the plant growth was reduced with weekly applications of 2000 ppm a.i. On the contrary several applications were risky on herbaceous plants, sometimes even with very low dosages (12.5 ppm peroxide).
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Chemistry and Biochemistry, University of St. Thomas, Houston, TX, United States of America.
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.
View Article and Find Full Text PDFACS Nano
January 2025
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!