Background: Inflammatory bowel diseases (IBDs), such as ulcerative colitis and Crohn's disease, are chronic inflammatory disorders that increase the risk for colorectal cancer. The mitochondrial translocator protein (TSPO) is a high-affinity drug- and cholesterol-binding protein expressed in the colon and its expression is increased in colon cancers. The aim of this study was to investigate TSPO expression in IBD biopsies and to establish an animal model of IBD to examine the role of TSPO. In addition, we evaluated the potential use of TSPO drug ligands in diagnosing and treating IBD.

Methods: TSPO expression in IBD biopsies was evaluated using immunohistochemistry. IBD was induced in a rat experimental model via treatment with dextran sodium sulfate (DSS). Colon morphology, TSPO expression, and proinflammatory cytokine production were evaluated in addition to the effect of TSPO drug ligands on disease pathology.

Results: TSPO protein levels were elevated in the enterocytes of IBD biopsies. TSPO expression was localized to the enterocyte mitochondria. DSS treatment induced a time-dependent phenotype mimicking IBD with tissue injury and subsequent tissue regeneration. Coadministration of DSS and the TSPO drug ligands PK 11195 or Ro5-4864 increased both the rate of colon ulceration and regeneration, whereas administration of the TSPO drug ligand flunitrazepam partially prevented this pathology. These data correlated with changes in proinflammatory cytokine plasma levels, as well as increased cytokine production and secretion from the colon.

Conclusions: TSPO may serve as a marker of the IBD repair process, and TSPO drug ligands should be further evaluated for IBD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930116PMC
http://dx.doi.org/10.1002/ibd.21250DOI Listing

Publication Analysis

Top Keywords

tspo drug
20
tspo expression
16
drug ligands
16
tspo
13
ibd biopsies
12
translocator protein
8
inflammatory bowel
8
ibd
8
expression ibd
8
proinflammatory cytokine
8

Similar Publications

An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.

View Article and Find Full Text PDF

TSPO-PET in pre-surgical evaluations: Correlation of neuroinflammation and SEEG epileptogenicity mapping in drug-resistant focal epilepsy.

Epilepsia

December 2024

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, Orsay, France.

Objectives: Resective surgery in drug-resistant focal epilepsy (DRFE) requires extensive evaluation to localize the epileptogenic zone (EZ). When non-invasive phase 1 assessments (electroencephalography, EEG; magnetic resonance imaging, MRI; and F-Fluorodeoxyglucose-positron emission tomography, [F]FDG-PET) are inconclusive for EZ localization, invasive investigations such as stereo-EEG (SEEG) are necessary. Epileptogenicity maps (Ems) visualize the EZ using SEEG-identified ictal high-frequency oscillations (iHFOs).

View Article and Find Full Text PDF

Bipolar disorder (BD) is psychiatric disorder of not fully acknowledged pathophysiology. Studies show the involvement of innate-immune system activation and inflammation in BD course and treatment efficiency. Microglia are crucial players in the inflammatory response possibly responsible for BD innate-immune activity.

View Article and Find Full Text PDF
Article Synopsis
  • * A small library of dual modulators was created using 2-phenylindole structures, showing effectiveness in binding to TSPO and activating CA VII.
  • * One promising compound demonstrated no cytotoxicity, stimulated TSPO function, activated CA VII, and increased expression of brain-derived neurotrophic factor, highlighting its potential for further development.
View Article and Find Full Text PDF

Septic cardiomyopathy (SCM) is a critical complication of sepsis, primarily attributed to mitochondrial dysfunction and impaired autophagic flux. This study explores the role of translocator protein (TSPO) in SCM pathogenesis and assesses its potential as a therapeutic target. We identified increased TSPO expression in plasma samples from sepsis patients, with further validation in septic rats and LPS-stimulated H9C2 cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!