Chemical characterisation of polysaccharides from Lilium davidii.

Nat Prod Res

College of Life Science and Chemistry, Tianshui Normal University, Tianshui 741001, China.

Published: March 2010

Lilium davidii var. unicolor Salisb is known for its esculent and exceptionally sweet bulbs. This article reports the isolation and purification of a non-starch polysaccharide from the bulb tissues. The polysaccharide was fractionated by Sephadex G-100 column chromatography, giving two polysaccharide fractions. We collected the main peak polysaccharide, termed Lilium davidii polysaccharide (LDP). The molecular appearance of LDP at different concentrations was observed with atomic force microscopy (AFM) imaging, and the chemical characterisation of LDP was studied by physical, chemical and spectroscopic techniques: for example, differential scanning calorimetry (DSC) analysis, methylation analysis, GC, GC-MS, and NMR. The results demonstrate that the LDP is an amorphous powder, containing three monosaccharide molecules: D-mannose (D-Man), D-glucose (D-Glc) and D-galactose (D-Gal), with approximate molar ratios of 10 : 19 : 1. The morphology of LDP was arranged as irregular crumb-like or island forms (3-D images) when the concentration of the solution was low, and more molecules were entangled as a rugged sugar layer at high concentration. The LDP has a molecular weight of 5.17 x 10(4) g mol(-1). On the basis of methylation and GC-MS analysis, IR, NMR, the likely linkages of sugar components of LDP was described as follows: the main chain of the LDP is primarily made up of a 1,4-linked form for beta-Glc and a 1,3-linked form for alpha-Man with molar ratios of 2 : 1. On average, there is one 1,6-linked form for alpha-Gal or one 1,3-linked form for alpha-Man residues which can be substituted at 6-O from among 30 sugar residues. The reduction terminal is beta-Glc.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786410903182212DOI Listing

Publication Analysis

Top Keywords

lilium davidii
12
chemical characterisation
8
ldp
8
ldp molecular
8
molar ratios
8
13-linked form
8
form alpha-man
8
polysaccharide
5
characterisation polysaccharides
4
polysaccharides lilium
4

Similar Publications

UPLC-Q-TOF-MS, Network Pharmacology and Molecular Docking to Reveal the Antidepressant Mechanism of the Different Components of Medicinal and Edible Lilies (Lilium sp. pl).

Comb Chem High Throughput Screen

February 2025

Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.

Background And Objectives: To explore the mechanism of action of the differential components of medicinal and edible lilies in treating depression by network pharmacology using UPLC-Q-TOF-MS technology.

Methods: The chemical composition of medicinal and edible lilies was analyzed, screening for unique medicinal compounds. Searched for depression-related targets.

View Article and Find Full Text PDF

Dietary uptake is the main pathway of exposure to polycyclic aromatic hydrocarbons (PAHs). However, there is no data regarding the pollution and health risks posed by PAHs in Lilium davidii var. unicolor.

View Article and Find Full Text PDF

This study aimed to investigate the impact of X-ray irradiation pretreatment at varying doses (0.5, 1.0, 1.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

Lily viruses regulate the viral community of the Lanzhou lily rhizosphere and indirectly affect rhizosphere carbon and nitrogen cycling.

Sci Total Environ

December 2024

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China. Electronic address:

The rhizosphere, where plant roots interact intensely with the soil, is a crucial but understudied area in terms of the impact of virus infection. In this study, we investigated the effects of lily symptomless virus (LSV) and cucumber mosaic virus (CMV) on the Lanzhou lily (Lilium davidii var. unicolor) rhizosphere using metagenomics and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!