The stepwise formation of bridging (mu-) hydrides of diiron dithiolates is discussed with attention on the pathway for protonation and subsequent isomerizations. Our evidence is consistent with protonations occurring at a single Fe center, followed by isomerization to a series of mu-hydrides. Protonation of Fe(2)(edt)(CO)(4)(dppv) (1) gave a single mu-hydride with dppv spanning apical and basal sites, which isomerized at higher temperatures to place the dppv into a dibasal position. Protonation of Fe(2)(pdt)(CO)(4)(dppv) (2) followed an isomerization pathway similar to that for [1H](+), except that a pair of isomeric terminal hydrides were observed initially, resulting from protonation at the Fe(CO)(3) or Fe(CO)(dppv) site. The first observable product from low temperature protonation of the tris-phosphine Fe(2)(edt)(CO)(3)(PMe(3))(dppv) (3) was a single mu-hydride wherein PMe(3) is apical and the dppv ligand spans apical and basal sites. Upon warming, this isomer converted fully but in a stepwise manner to a mixture of three other isomeric hydrides. Protonation of Fe(2)(pdt)(CO)(3)(PMe(3))(dppv) (4) proceeded similarly to the edt analogue 3, however a terminal hydride was observed, albeit only briefly and at very low temperatures (-90 degrees C). Low-temperature protonation of the bis-chelates Fe(2)(xdt)(CO)(2)(dppv)(2) produced exclusively the terminal hydrides [HFe(2)(xdt)(mu-CO)(CO)(dppv)(2)](+) (xdt = edt and pdt), which subsequently isomerized to a pair of mu-hydrides. At room temperature these (dppv)(2) derivatives convert to an equilibrium of two isomers, one C(2)-symmetric and the other C(s)-symmetric. The stability of the terminal hydrides correlates with the (C(2)-isomer)/(C(s)-isomer) equilibrium ratio, which reflects the size of the dithiolate. The isomerization was found to be unaffected by the presence of excess acid, by solvent polarity, and the presence of D(2)O. This isomerization mechanism is proposed to be intramolecular, involving a 120 degrees rotation of the HFeL(3) subunit to an unobserved terminal basal hydride as the rate-determining step. The observed stability of the hydrides was supported by DFT calculations, which also highlight the instability of the basal terminal hydrides. Isomerization of the mu-hydride isomers occurs on alternating FeL(3) via 120 degree rotations without generating D(2)O-exchangeable intermediates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476456 | PMC |
http://dx.doi.org/10.1039/b910147k | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States.
Molecular Zr phosphides are extremely rare, with no examples containing a one-coordinated and terminal triple-bonded phosphorus atom. We report here an isolable and relatively stable Zr phosphide complex, [(PN)Zr≡P{μ-Na(OEt)}] (), stemming from a cyclometalated Zr-hydride, [(PN)(PN')Zr(H)] (), and NaPH. Complex is prepared from two- or one-electron reductions of precursors [(PN)ZrCl] () or metastable Zr[(PN)ZrCl], respectively.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
We present a bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene and an organocatalytic guanidine moiety that enables, for the first time, a copper(I)-catalyzed reduction of amides with H as the terminal reducing agent. The guanidine allows for reactivity tuning of the originally weakly nucleophilic copper(I) hydrides - formed in situ - to be able to react with difficult-to-reduce amides. Additionally, the guanidine moiety is key for the selective recognition of "privileged" amides based on simple and readily available heterocycles in the presence of other amides within one molecule, giving rise to hitherto unknown site-selective catalytic amide hydrogenation.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S-3H6, Canada.
Here it is demonstrated that there is a linear relationship between the terminal 3d metal hydride stretching wavenumber ν and the metal hydride distance reported to date: ν ∼ (-1.05 + 3.35) × 10 cm.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Radiochemistry and Nuclear Measurements, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States.
Borohydride-based electrolytes have recently emerged as promising media for the electrodeposition of electropositive metals, including rare earth (RE) elements. While the presence of supporting alkali metal cations and RE counteranions provides essential electrochemical conductivity for achieving fast metal electrodeposition, interactions between the host ligand and solvated neodymium (Nd) complexes remain unclear. This study provides insights into the coordination structure of a concentrated and directly solvated Nd salt in a lithium borohydride-supported electrolyte.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
The dimeric calcium and magnesium hydrides, [(BDI)AeH] [BDI=HC{(Me)CNDipp}, Dipp=2,6-i-PrCH; Ae=Mg or Ca] do not react with PhGeH in non-coordinating solvent. Addition of THF, however, induces deprotonation and access to monomeric Ae-germanide complexes, [(BDI)Ae{GePh}(THF)], both of which have been structurally characterized. Although this process is facile when Ae=Ca, the analogous magnesium-based reaction requires heating to temperatures >100 °C, under which conditions germanide formation is complicated by THF ring opening and the generation of an alkaline earth germyl-C-terminated n-butoxide, [(BDI)Mg{μ-O(CH)GePh}].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!