The shade avoidance syndrome: a non-Markovian stochastic growth model.

J Theor Biol

Department of Oncological Sciences and Division of Vascular Biology, Institute for Cancer Research and Treatment, University of Torino, Str Prov 142 Km 3.95, 10060 Candiolo, Italy.

Published: June 2010

Plants at high population density compete for light, showing a series of physiological responses known as the shade avoidance syndrome. These responses are controlled by the synthesis of the hormone auxin, which is regulated by two signals, an environmental one and an internal one. Considering that the auxin signal induces plant growth after a time lag, this work shows that plant growth can be modelled in terms of an energy-like function extremization, provided that the Markov property is not applied. The simulated height distributions are bimodal and right skewed, as in real community of plants. In the case of isolated plants, theoretical growth dynamics and speed correctly fit Arabidopsis thaliana experimental data reported in literature. Moreover, the growth dynamics of this model is shown to be consistent with the biomass production function of an independent model. These results suggest that memory effects play a non-negligible role in plant growth processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2010.02.039DOI Listing

Publication Analysis

Top Keywords

plant growth
12
shade avoidance
8
avoidance syndrome
8
growth dynamics
8
growth
6
syndrome non-markovian
4
non-markovian stochastic
4
stochastic growth
4
growth model
4
model plants
4

Similar Publications

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Significance of Raffinose Family Oligosaccharides (RFOs) metabolism in plants.

Adv Biotechnol (Singap)

March 2024

School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.

Raffinose Family Oligosaccharides (RFOs) are a kind of polysaccharide containing D-galactose, and they widely exist in higher plants. Synthesis of RFOs begins with galactinol synthase (GolS; EC 2.4.

View Article and Find Full Text PDF

Importance of pre-mRNA splicing and its study tools in plants.

Adv Biotechnol (Singap)

February 2024

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.

Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes.

View Article and Find Full Text PDF

Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation.

Adv Biotechnol (Singap)

September 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.

Plant genetic transformation is a pivotal and essential step in modifying important agronomic traits using biotechnological tools, which primarily depend on the efficacy of transgene delivery and the plant regeneration system. Over the years, advancements in the development of delivery methods and regeneration systems have contributed to plant engineering and molecular breeding. Recent studies have demonstrated that the efficiency of plant transformation can be improved by simultaneously delivering meristem-developmental regulators, utilizing virus-mediated gene editing, and executing non-sterile in planta manipulations.

View Article and Find Full Text PDF

Launching Advanced Biotechnology to elevate biotechnology research across disciplines, from biomedicine to agriculture.

Adv Biotechnol (Singap)

October 2023

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!