Objectives: We sought to determine concentrations of total and labile iron in substantia nigra from patients with Parkinson disease and from controls to assess if oxidative stress is triggered by an increased concentration of iron.

Methods: Total iron concentration in the whole substantia nigra was evaluated in 17 parkinsonian and 29 control samples. Concentrations of labile iron and copper were assessed in 6 parkinsonian and 8 control samples. The total iron concentration, the Fe(2+)/Fe(3+) ratio, and iron-binding compounds were determined by Mössbauer spectroscopy. Labile iron and copper were measured by electrothermal atomic absorption spectrometry. Activity of reactive oxygen species was evaluated by visible light fluorescence.

Results: The labile iron concentration was significantly higher and corresponded to significantly higher reactive oxygen species activity in parkinsonian vs control samples. No significant difference was found in the total concentrations of copper or iron in the whole substantia nigra between parkinsonian and control samples. Mössbauer spectroscopy detected no Fe(2+) in any samples.

Conclusions: The substantia nigra of parkinsonian patients contained more labile iron compared with that of controls. This labile iron generated higher reactive oxygen species activity. The oxidative stress damage in parkinsonian substantia nigra may be related to an excess of labile iron and not of the total iron in the diseased tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2010.02.007DOI Listing

Publication Analysis

Top Keywords

labile iron
28
substantia nigra
24
reactive oxygen
16
oxygen species
16
parkinsonian control
16
control samples
16
iron
12
species activity
12
total iron
12
iron concentration
12

Similar Publications

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) are challenging blood cancers with limited long-term survival rates, necessitating novel therapeutic strategies. This study explored the role of Histone deacetylase (HDAC) inhibitors in enhancing ferroptosis in AML cells by modulating iron metabolism. We demonstrated that HDAC inhibitors (Entinostat and Vorinostat) sensitize AML cells to ferroptosis both in vitro and in vivo.

View Article and Find Full Text PDF

The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite.

View Article and Find Full Text PDF

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

Iron homeostasis is strictly related to numerous physiological pathways including cell cycle progression and cell growth. The newest anticancer strategies focus on either depleting the cells with a suitable chelator or increasing their loading by administering iron complexes to induce ferroptosis. Iron depletion inhibits cell proliferation, while iron overload induces the damage of guanine nucleobases in G-quadruplex structures via ROS generation, leading to genome instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!