Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The receptor tyrosine kinases (for example EGFR, PDGFR, VEGFR) are a transmembrane protein family which plays a crucial role in tumor growth, survival, metastasis dissemination and angiogenesis. During the past 10 years, many tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment (imatinib, gefitinib, erlotinib, sunitinib, sorafenib). These compounds generally possess a pyrrolo- or pyrimido- pyrimidine scaffold or approaching molecular structure. We synthesized 10 thienopyrimidine compounds (including 5 newly synthesized) whose scaffold is very similar to the agents cited above. The cytotoxicity of these agents was evaluated using a MTT assay and a flow cytometry technique on glioblastoma cell lines. Two compounds showed a similar cytotoxicity to the standard anti-EGFR gefitinib (IC50: gefitinib=51.9 microM, 6b=61.8 microM, 6c=41.2 microM), suggesting a blockade of the EGFR pathway by binding to the TK receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2010.02.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!