Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes ultrasonic transcutaneous energy transfer (UTET) based on a kerfless transmitter with Gaussian radial distribution of its radiating surface velocity. UTET presents an attractive alternative to electromagnetic TET, where a low power transfer density of less than 94 mW/cm(2) is sufficient. The UTET is operated with a continuous wave at 650 kHz and is intended to power devices implanted up to 50mm deep. The transmitter was fabricated using a 15 mm diameter disc shape PZT (Lead Zirconate Titanate) element (C-2 grade, Fujiceramics Corporation Tokyo Japan), in which one surface electrode was partitioned into six equal area electrodes ( approximately 23 mm(2) each) in the shape of six concentric elements. The UTET was experimented using pig muscle tissue, and showed a peak power transfer efficiency of 39.1% at a power level of 100 mW. An efficient (91.8%) power driver for the excitation of the transmitter array, and an efficient rectifier (89%) for the implanted transducer are suggested. To obtain the pressure field shape, the Rayleigh integral has been solved numerically and the results were compared to finite element simulation results. Pressure and power transfer measurements within a test tank further confirm the effectiveness of the proposed UTET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2010.01.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!