Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

Inhal Toxicol

Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.

Published: April 2010

Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08958370903456637DOI Listing

Publication Analysis

Top Keywords

aerosolized jet
12
samples collected
12
aerosol gas-phase
8
composition aerosolized
8
jet fuel
8
jet fuels
8
collected min
8
total concentrations
8
specific compound
8
compound concentrations
8

Similar Publications

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

An improved endwall-injection technique for examining high-temperature ignition of lubricating oils in shock tubes.

Rev Sci Instrum

January 2025

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.

Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.

View Article and Find Full Text PDF

Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.

Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.

View Article and Find Full Text PDF

Development of a Wearable Electromyographic Sensor with Aerosol Jet Printing Technology.

Bioengineering (Basel)

December 2024

Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

Electromyographic (EMG) sensors are essential tools for analyzing muscle activity, but traditional designs often face challenges such as motion artifacts, signal variability, and limited wearability. This study introduces a novel EMG sensor fabricated using Aerosol Jet Printing (AJP) technology that addresses these limitations with a focus on precision, flexibility, and stability. The innovative sensor design minimizes air interposition at the skin-electrode interface, thereby reducing variability and improving signal quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!