The hydrated electron is one of the most fundamental nucleophiles in aqueous solution, yet it is a transient species in liquid water, making it challenging to study. The solvation thermodynamics of the electron are important for determining the band structure and properties of water and aqueous solutions. However, a wide range of values for the electron solvation enthalpy (-1.0 to -1.8 eV) has been obtained from previous methods, primarily because of the large uncertainty as to the value for the absolute proton solvation enthalpy. In the gas phase, electron interactions with water can be investigated in stable water clusters that contain an excess electron, or an electron and a solvent-separated monovalent or divalent metal ion. Here, we report the generation of stable water clusters that contain an excess electron and a solvent-separated trivalent metal ion that are formed upon electron capture by hydrated trivalent lanthanide clusters. From the number of water molecules lost upon electron capture, adiabatic recombination energies are obtained for La(H(2)O)(n)(3+) (n = 42-160). The trend in recombination energies as a function of hydration extent is consistent with a structural transition from a surface-located excess electron at smaller sizes (n or= approximately 60). The recombination enthalpies for n > 60 are extrapolated as a function of the geometrical dependence on cluster size to infinite size to obtain the bulk hydration enthalpy of the electron (-1.3 eV). This extrapolation method has the advantages that it does not require estimates of the absolute proton or hydrogen hydration enthalpies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9079385DOI Listing

Publication Analysis

Top Keywords

electron
12
water clusters
12
excess electron
12
trivalent metal
8
solvation enthalpy
8
absolute proton
8
stable water
8
clusters excess
8
electron solvent-separated
8
metal ion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!