Adsorption-mediated CO(2) separation can reduce the cost of carbon capture and storage. The reduction in cost requires adsorbents with high capacities for CO(2) sorption and high CO(2)-over-N(2) selectivity. Amine-modified sorbents are promising candidates for carbon capture. To investigate the details of CO(2) adsorption in such materials, we studied mesocaged (cubic, Pm3n symmetry) silica adsorbents with tethered propylamines using Fourier transform infrared (FTIR) spectroscopy and volumetric uptake experiments. The degree of heterogeneity in these coatings was varied by either cosynthesizing or postsynthetically introducing the propylamine modification. In situ FTIR spectroscopy revealed the presence of both physisorbed and chemisorbed CO(2) in the materials. We present direct molecular evidence for physisorption using FTIR spectroscopy in mesoporous silica sorbents modified with propylamines. Physisorption reduced the CO(2)-over-N(2) selectivity in amine-rich sorbents. Samples with homogeneous coatings showed typical CO(2) adsorption trends and large quantities of IR-observable physisorbed CO(2). The uptake of CO(2) in mesocaged materials with heterogeneous propylamine coatings was higher at high temperatures than at low temperatures. At higher temperatures and low pressures, the postsynthetically modified materials adsorbed more CO(2) than did the extracted ones, even though the surface area after modification was clearly reduced and the coverage of primary amine groups was lower. The principal mode of CO(2) uptake in postsynthetically modified mesoporous silica was chemisorption. The chemisorbed moieties were present mainly as carbamate-ammonium ion pairs, resulting from the quantitative transformation of primary amine groups during CO(2) adsorption as established by NIR spectroscopy. The heterogeneity in the coatings promoted the formation of these ion pairs. The average propylamine-propylamine distance must be small to allow the formation of carbamate-propylammonium ion pairs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la1001495 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Porous adsorbents are a promising class of materials for the direct air capture of CO (DAC). Practical implementation of adsorption-based DAC requires adsorbents that can be used for thousands of adsorption-desorption cycles without significant degradation. We examined the potential degradation of adsorbents by a mechanism that appears to have not been considered previously, namely, ozonolysis by trace levels of ozone from ambient air.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFLangmuir
January 2025
Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
Realizing reliable online detection of characteristic gases (H, CH, CO, and CO) in lithium-ion batteries is crucial to maintain the safe and stable operation of power equipment and new energy storage power plants. In this study, transition metal Pt ( = 1, 3, and 4) clusters are attached to MoSe nanosheets for the first time based on density functional theory using the perfect crystalline facet modification method, and the adsorption characteristics and electronic behaviors of H, CH, CO, and CO are investigated and enhanced. The results show that Pt ( = 1, 3, and 4) is reliably chemically connected to the substrate without any significant deformation of the geometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!