Surface analytical tools as surface plasmon resonance (SPR) have become increasingly important in biomedical research since they offer high detection sensitivity compared to traditional biomedical methods. For the use of SPR as a biomedical research tool there is a need to immobilize the reactants to a solid sensor surface. It is nowadays fairly straightforward to immobilize various reactants and hydrophilic proteins to a solid sensor surface and SPR has successfully been used in several applications using such proteins when studying various protein interactions. When using SPR for the analysis of transmembrane proteins the immobilization onto the solid surface becomes more difficult. Transmembrane proteins are more sensitive to the surroundings and need to be incorporated into a structure where it can reside in a natural environment. Supported liposomes offer such environment. In this chapter a new method is presented where multilayers of such supported liposomes are used to immobilize transmembrane proteins onto a solid sensor surface which is suitable for use in SPR detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-670-2_16 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
Carboxymethyl chitosan (CMCh) is a natural polysaccharide derivative with biodegradability, rich in active amino and carboxyl groups. It can act as a ligand to coordinate with rare earth ions, transferring absorbed energy to the central ion to sensitize its luminescence. In this paper, CMCh-Tb was prepared as a solid fluorescent probe by mixing CMCh solution with Tb.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.
High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, Johannesburg, South Africa.
Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Low Temperature and Structure Research, Polish Academy of Science, ul. Okólna 2, Wrocław 50-422, Poland.
Research is ongoing to develop new phosphors capable of emitting light across a broad spectrum, ranging from the ultraviolet (UV) to the infrared region, with potential applications in diverse fields. Using the method of solid-state reactions, a series of LiBaF:Pr phosphors were obtained, and their luminescent properties in the UV-visible range were studied. The photon cascade emission (PCE) phenomenon has been observed under excitation of the 4f5d bands of Pr.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Gas analysis offers real-time critical insights into the various processes occurring within batteries. However, monitoring battery degradation through gas formation remains relatively underexplored. Traditional coin cell setups pose challenges for long-cycle experiments and do not accurately reflect real-life battery usage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!