JM-1232(-), a newly manufactured isoindole derivative, shows sedative effect at a lower concentration compared with propofol. In the present study, we analyzed the response of the central respiratory activity to JM-1232(-). The brainstem-spinal cord of a newborn rat was isolated and was continuously superfused with oxygenated artificial cerebrospinal fluid (ACSF). Rhythmic inspiratory burst activity was recorded from C4 spinal ventral root using a glass suction electrode. We measured C4 burst rate and amplitude of integrated C4 activity. After obtaining a control recording, the preparation was superfused with ACSF containing JM-1232(-) at 10, 100 or 500 microM for 10 min. The application of both 10 and 100 microM JM-1232(-) did not decrease C4 burst rate significantly. However, 500 microM JM-1232(-) reduced C4 burst rate. On the contrary, C4 burst amplitude was not affected by the application of JM-1232(-) for 10 min at any concentrations. In conclusion, JM-1232(-) at a low concentration (but presumably higher than hypnotic dose), did not depress the central respiratory activity, whereas at a high concentration depression was seen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-5692-7_23DOI Listing

Publication Analysis

Top Keywords

central respiratory
12
respiratory activity
12
burst rate
12
jm-1232-
8
500 microm
8
microm jm-1232-
8
activity
5
burst
5
jm-1232- sedative
4
sedative central
4

Similar Publications

Adult patients with central airway tumors commonly present with dyspnea on exertion. These patients may remain asymptomatic until more than half of the airway diameter is obliterated. Anesthesia for debulking a central airway tumor is challenging.

View Article and Find Full Text PDF

Background: The pathogenic distribution of co-infections and immunological status of patients infected with human adenovirus serotypes 3 or 7 (HAdV-3 or HAdV-7) were poorly understood.

Methods: This study involved a retrospective analysis of respiratory specimens collected from enrolled children with lower respiratory tract infections (LRTIs), positive for HAdV-3 or HAdV-7 from January 2017 to December 2019. Demographic data, clinical features, laboratory and radiographic findings were compared to delineate the impact of co-infections, and immune responses on clinical severity of HAdV-3 or HAdV-7 infections.

View Article and Find Full Text PDF

Objective: To establish a prediction nomogram for early prediction of neonatal acute respiratory distress syndrome (NARDS).

Methods: This is a retrospective cross-sectional study conducted between January 2021 and December 2023. Clinical characteristics and laboratory results of cases with neonatal pneumonia were compared in terms of presence of NARDS diagnosis based on the Montreux Definition.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19), resulting from the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affects various bodily systems, including the heart, central nervous system, muscles, and bones, all of which harbor angiotensin-converting enzyme 2 (ACE-2) receptors similar to those in the respiratory system. However, research on the inflammatory response and its impact on systems such as the musculoskeletal one is relatively scarce. Our study aimed to investigate bone and muscle metrics as well as handgrip strength in individuals who recuperated from COVID-19 infection.

View Article and Find Full Text PDF

Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!