This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time-frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-010-0590-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!