Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acidosis is a common feature of the human brain during ischemic stroke and is known to cause neuronal injury. However, the mechanism underlying acidosis-mediated injury of the human brain remains elusive. We show that a decrease in the extracellular pH evoked inward currents characteristic of acid-sensing ion channels (ASICs) and increased intracellular Ca(2+) in cultured human cortical neurons. Acid-sensing ion channels in human cortical neurons show electrophysiological and pharmacological properties distinct from those in neurons of the rodent brain. Reverse transcriptase-PCR and western blot detected a high level of the ASIC1a subunit with little or no expression of other ASIC subunits. Treatment of human cortical neurons with acidic solution induced substantial cell injury, which was attenuated by the ASIC1a blockade. Thus, functional homomeric ASIC1a channels are predominantly expressed in neurons from the human brain. Activation of these channels has an important role in acidosis-mediated injury of human brain neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916164 | PMC |
http://dx.doi.org/10.1038/jcbfm.2010.30 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!