Despite widespread use of anti-CD20 antibodies as therapeutic agents for oncologic and autoimmune indications, precise descriptions of killing mechanisms remain incomplete. Complement-dependent cytolysis and antibody-dependent cell-mediated cytotoxicity are indicated as modes of target cell depletion; however, the importance of apoptosis induction is controversial. Studies showing that the therapeutic anti-CD20 antibody rituximab (Rituxan) mediates apoptosis of tumor cell targets in vitro after cross-linking by anti-Fc reagents suggest that enhancement strategies applied to Fc-independent activities for anti-CD20 antibodies could improve therapeutic efficacy. An anti-CD20 antibody designated DXL625, with autophilic properties such as increased binding avidity, is shown here to independently induce caspase-mediated apoptosis of an established B-cell lymphoma line in vitro. Depletion of membrane cholesterol or chelation of extracellular calcium abrogated the pro-apoptotic activity of DXL625, indicating that intact lipid rafts and calcium are required for this activity. The Fc-mediated complement-dependent and antibody-dependent cellular killing mechanisms are maintained by DXL625 despite conjugation of the parental Rituxan antibody to the autophilic DXL peptide sequence. This study shows a strategy for improving anti-CD20 immunotherapy by endowing therapeutic antibodies with self-interacting properties.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0b013e328337d485DOI Listing

Publication Analysis

Top Keywords

anti-cd20 antibody
12
anti-cd20 antibodies
8
killing mechanisms
8
anti-cd20
5
autophilic anti-cd20
4
antibody
4
dxl625
4
antibody dxl625
4
dxl625 displays
4
displays enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!