Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.09-151456DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
16
olfactory memory
16
long-term olfactory
12
olfactory
10
associative olfactory
8
olfactory task
8
long-term retention
8
retention task
8
memory retention
8
acquisition task
8

Similar Publications

Olfactory Dysfunction in Allergic Rhinitis.

Clin Rev Allergy Immunol

December 2024

Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Olfactory dysfunction (OD) can have serious consequences as it hinders individuals from detecting important warning signals like smoke, spoiled food, and gas leaks. This can significantly impact their nutritional status, eating satisfaction, and overall quality of life. Allergic rhinitis (AR) is a common disease that greatly affects the quality of life and can lead to a decrease, distortion, or complete loss of olfactory ability.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is a progressive irreversible dementia characterized by beta-amyloid protein plaque deposition and hyperphosphorylation of tau forming neurofibrillary tangles, and neurodegeneration. An emerging theory posits that infections could be one of the triggering factors in AD development and progression. Multiple lines of evidence have linked Chlamydia pneumoniae (Cp), a gram-negative obligate intracellular bacterium with AD.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.

Background: Lewy body disease (LBD) often co-occurs with Alzheimer's (AD), resulting in more significant cognitive decline than AD or LBD alone. LBD's hallmarks, asyn-positive Lewy bodies and neurites, propagate from the enteric system or olfactory bulb to the amygdala, which acts as a gatekeeper for spread to other structures. Initially, LBD appears in the central or cortical nuclei, reflecting brainstem or olfactory origins.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the progressive impact of chronic iron overload on the olfactory bulb, a region significantly affected in early neurodegenerative diseases like Parkinson's and Alzheimer's. The focus is on understanding how iron accumulation leads to oxidative stress, mitochondrial dysfunction, and neuronal damage over time in middle-aged mice.

Method: The mice were continuously administered FC for a duration of 16 weeks, and the olfactory behavior of the mice was observed at intervals of 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!