Effect of hypoxia on expiratory muscle activity in fetal sheep.

Respir Physiol Neurobiol

Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.

Published: April 2010

The fetal respiratory response to acute hypoxia is characterized by depression, often to apnea. This study examined the effect of hypoxia on the electromyogram (EMG) of the thyroarytenoid (TA) muscle. Under anesthesia catheters were placed in the fetal sheep carotid artery, fourth cerebral ventricle, trachea and amniotic fluid and wires sewn into the diaphragm and TA muscle. During normoxic episodes of slow fetal breathing (<40 breaths per min) TA EMG activity was phasic beginning immediately after diaphragmatic EMG bursts and ending well before the next burst. This timing is consistent with the post-inspiratory (post-I) phase of the respiratory cycle. Lowering fetal arterial Pa O(2) from approximately 20mm Hg to approximately 13 mm Hg resulted in arrest of diaphragm EMG and tonic TA activity. Instillation of the (R,S)- -amino-3- hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) ionotrophic glutamate receptor antagonist 2,3-dihydro-6-nitro-7-sulphamoyl-benzo(f) quinoxaline (NBQX) into the cerebrospinal fluid (CSF) of the fourth ventricle abolished tracheal pressure deflections and diaphragmatic EMG activity. Tonic TA activity, however, could still be evoked by hypoxia. These results indicate that fetal post-I motoneurons are not inhibited by moderate hypoxia and that their tonic activity may be due to a loss of inhibitory input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859100PMC
http://dx.doi.org/10.1016/j.resp.2010.03.003DOI Listing

Publication Analysis

Top Keywords

fetal sheep
8
hypoxia expiratory
4
expiratory muscle
4
muscle activity
4
fetal
4
activity fetal
4
sheep fetal
4
fetal respiratory
4
respiratory response
4
response acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!