A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. | LitMetric

Unlabelled: Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Nosocomial infections represent an enormous emerging problem, especially in patients with ambulatory treatment, which requires that they wear medical devices for an extended period of time. In this work, an evaluation of the antimicrobial activity of both silver and titanium nanoparticles was carried out against a panel of selected pathogenic and opportunistic microorganisms, some of them commonly associated with device-associated infections. Cytotoxicity assays monitoring DNA damage and cell viability were evaluated using human-derived monocyte cell lines. We show that silver-coated nanoparticles having a size of 20-25 nm were the most effective among all the nanoparticles assayed against the tested microorganisms. In addition, these nanoparticles showed no significant cytotoxicity, suggesting their use as antimicrobial additives in the process of fabrication of ambulatory and nonambulatory medical devices.

From The Clinical Editor: In this study, antimicrobial activity of silver and titanium nanoparticles was evaluated against a panel of selected pathogenic and opportunistic microorganisms. Silver-coated nanoparticles of 20-25 nm size were the most effective among all the nanoparticles without significant cytotoxicity, suggesting their use as antimicrobial additives in the process of fabrication of ambulatory and nonambulatory medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2010.02.001DOI Listing

Publication Analysis

Top Keywords

silver titanium
12
titanium nanoparticles
12
evaluation antimicrobial
8
nanoparticles
8
medical devices
8
antimicrobial activity
8
activity silver
8
panel selected
8
selected pathogenic
8
pathogenic opportunistic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!